Action Recognition and Detection with Deep Learning

Yue Zhao Multimedia Lab, CUHK https://zhaoyue-zephyrus.github.io

Why do we need to understand action?

- Various real-world applications
 - Anomaly detection in video surveillance
 - Gesture recognition for VR
 - Personalized recommendation/retrieval for video websites/apps (YouTube,Tik-Tok)

Video adapted from https://www.youtube.com/watch?v=PJqbivkm0Ms.

Video adapted from https://www.youtube.com/watch?v=QcCjmWwEUgg

Overview

- Datasets for video-based action understanding
- Methods for action recognition
 - Before Deep Learning
 - After Deep Learning
- Cutting-edge action recognition
- More for action understanding
 - Temporal action detection
 - Spatial temporal action detection

Datasets (1)

• From restricted scenarios (e.g. KTH) to videos in the wild (e.g. THUMOS'14)



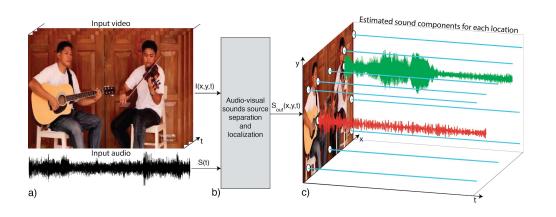
KTH Dataset (https://www.youtube.com/watch?v=Jm69kbCC17s) THUMOS'14 Dataset (<u>https://www.crcv.ucf.edu/THUMOS14/</u>)

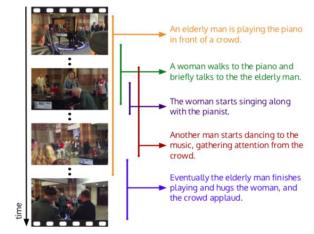
Datasets (2)

- From small-scale (e.g. Olympic Sports) to larger-scale (Sports-1M, YouTube-8M, Moments in Time, Kinetics-400/600)
- Challenges arise:
 - Storage (It costs many TBs to save the Sports-1M videos.)
 - Computation (It takes multiple GPUs to train a network for days or even weeks.)
 - Imbalanced data (long-tail distribution)

Datasets (3)

- Daily-life: Charades, VLOG
- Egocentric: Epic-Kitchens, Charades-Ego
- Multimodal: Visual + X
 - + language => ActivityNet Captions
 - + sound => The sound of pixels
 - + speech => AVA ActiveSpeaker, AVA Speech



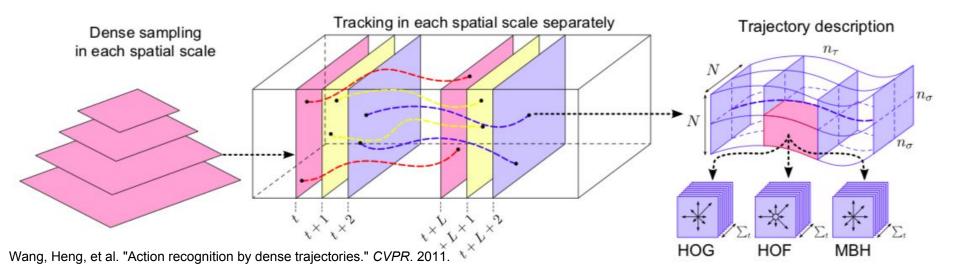


The basic problem - Action recognition

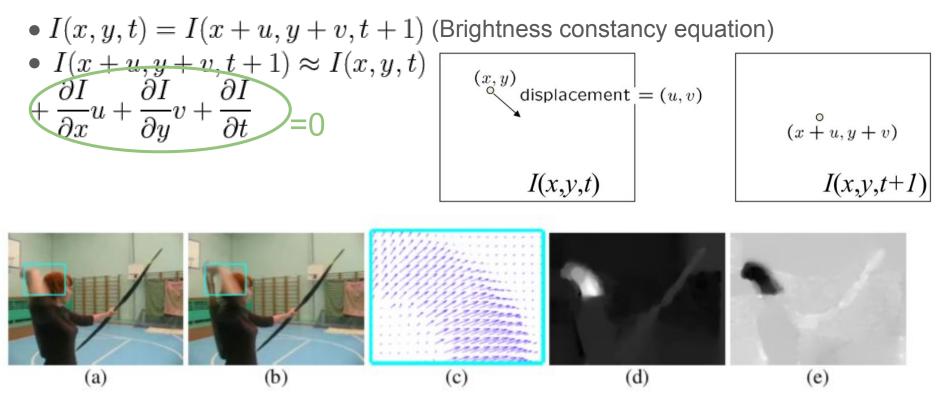
- Given a video clip, output an action prediction.
- Similar to image classification (object recognition)
- The difference is that the input is a sequence of 2D images (3D).

Pre-Deep Learning Methods

- Tracking points of interest (trajectory) and extract local descriptors (HOG, HOF, MBH) thereon.
- The trajectory can be improved by compensating the camera motion.



Optical Flow



horizontal component

vertical component

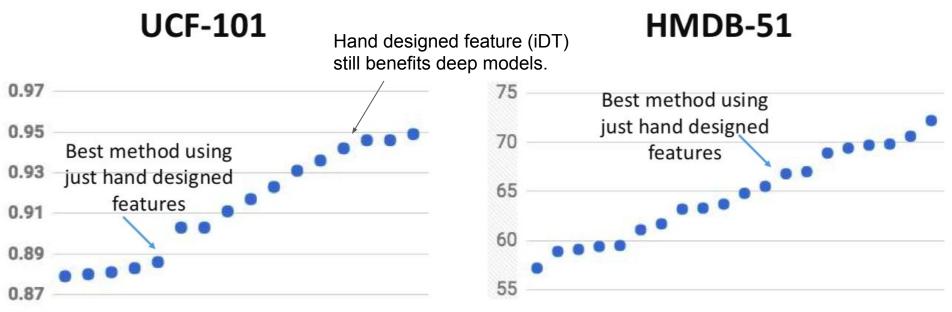
Improved Dense Trajectories (iDT)

Camera motion

Wang, Heng, and Cordelia Schmid. "Action recognition with improved trajectories." ICCV. 2013.

Post-Deep Learning Methods

• Follow the roadmap of image classification: AlexNet, VGG, Inception, ResNet

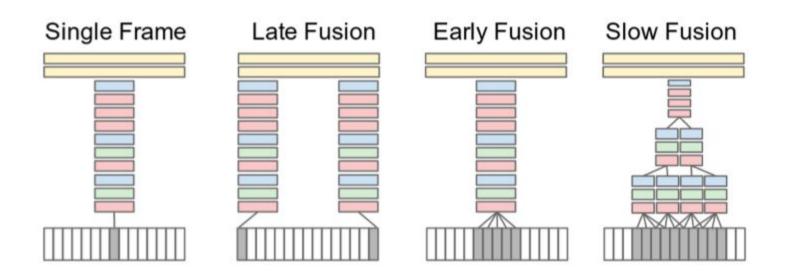


Adapted from AZ's slides at YouTube-8M challenge workshop at ECCV 2018.

https://static.googleusercontent.com/media/research.google.com/zh-CN//youtube8m/workshop2018/p_i01.pdf

Key issue

• Extend CNN in the time domain to exploit the spatio-temporal information.



Karpathy, Andrej, et al. "Large-scale video classification with convolutional neural networks." CVPR. 2014.

Two-stream Architecture

- Spatial: appearance
- Temporal: motion (optical flow)

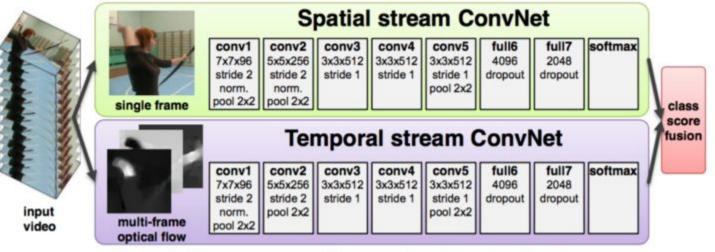
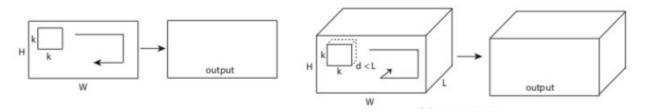


Figure 1: Two-stream architecture for video classification.

Simonyan, Karen, and Andrew Zisserman. "Two-stream convolutional networks for action recognition in videos." NIPS. 2014.

3D Networks

- Applying 3D convolution on a video volume results in another volume, preserving the temporal information of the input signal.
- Problem: model complexity increases drastically
- Tricks:
 - Leverage the good representation of 2D networks by inflating 2D conv kernels to 3D.
 - Feed it with more data! (Kinetics)



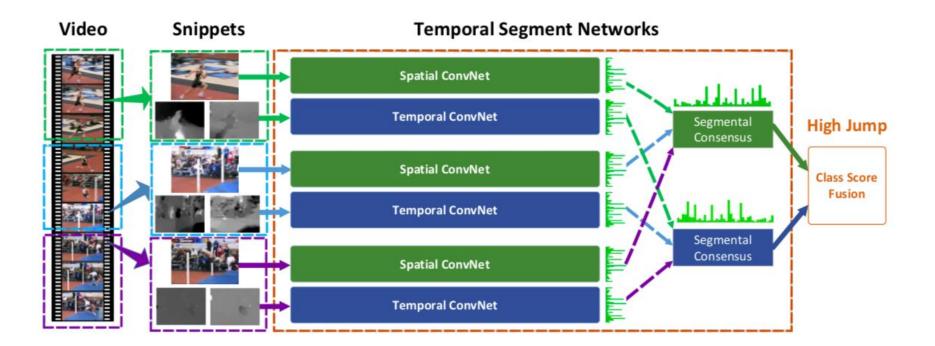
Tran, Du, et al. "Learning spatiotemporal features with 3d convolutional networks." ICCV. 2015.

Cutting-edge Action Recognition

- How can we model the long-term temporal information? (TSN, Wang, Limin, et al. ECCV 2016 & PAMI 2018, TRN, Zhou, Bolei, et al. ECCV 2018)
- How can we better model the short-term motion information?
 - Is optical flow good enough for action recognition? (Sevilla-Lara, Laura, et al. GCPR 2018)
 - Insert a CNN for motion estimation into the two-stream architecture. (Zhu, Yi, et al. ACCV 2018)
 - Use cost volume to coarsely estimate the motion. (Zhao, Yue, et al. CVPR, 2018)
- How can we take advantage of the motion information?
 - Use motion information to align appearance feature. (Zhao, Yue, et al. NeurIPS, 2018)
- How can we leverage the interaction between human (subject) and object?
 - (Wang, Xiaolong, and Gupta. ECCV 2018)
- More efficient action recognition
 - 2D convolution operation at early stage + low-cost 3D convolution operation at higher level (ECO, Zolfaghari et. al. ECCV, 2018)
 - 2D convolution operation + exchange temporal information across frames by temporal shuffle (TSM, Lin, Ji, et al. arXiv: 1811.08383)

Temporal Segment Networks

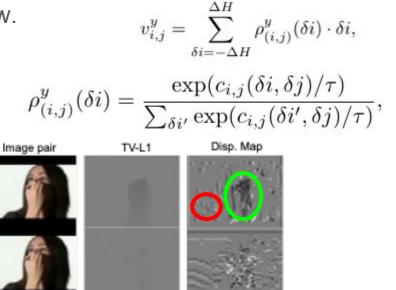
• Long-term temporal modeling.



Motion estimation via cost volume

- Cost volume construction via matching similarities.
- Cost volume processing by computing expected displacement.
- Directly from RGB frames without optical flow.





Zhao, Yue, Yuanjun Xiong, and Dahua Lin. "Recognize actions by disentangling components of dynamics." CVPR. 2018.

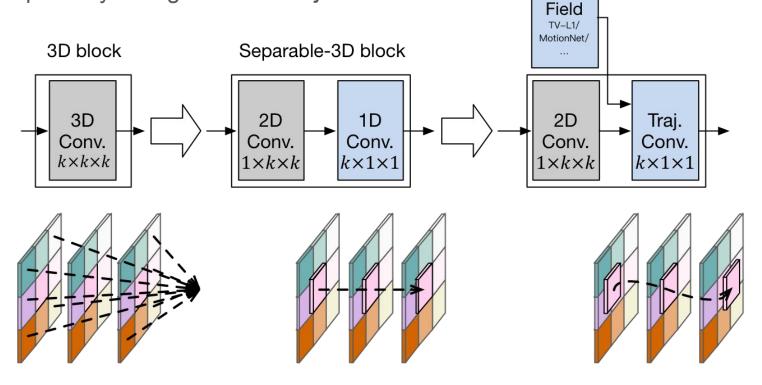
Motion estimation via cost volume

• The whole architecture outperforms other methods which only take RGB frames as input, maintaining real-time speed (>40 FPS).

Method	Dataset	Accuracy
C3D (1 nets) [23]	Sports-1M	82.3%
C3D (3 nets) [23]	Sports-1M	85.2%
Pseudo-3D ResNet [18]	ImageNet+Sports-1M	88.6%
RGB-I3D [3]	ImageNet	84.5%
RGB+EMV [33]	ImageNet	86.4%
TSN (RGB) [29]	ImageNet	85.7%
TSN (RGB+RGB-Diff) [29]	ImageNet	91.0%
Ours	ImageNet	91.8%
Ours	ImageNet+Kinetics	95.9%

TrajectoryNet

• Inspired by Wang's *Dense Trajectories* before DL. Motion

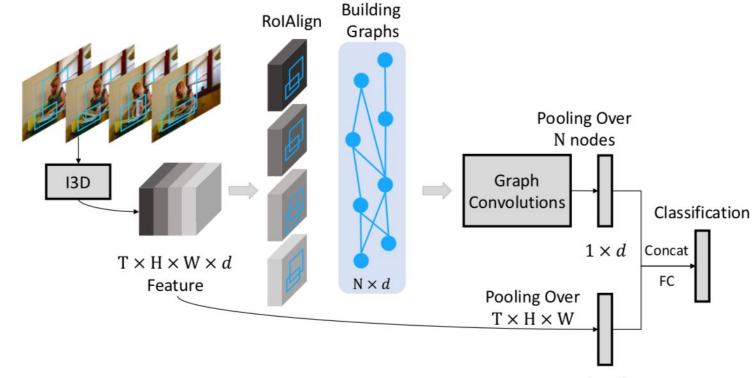


Method	Use deep feature?	Feature tracking?	End-to-end?
STIP	×	×	×
DT, iDT	×	✓	×
TSN, I3D	<i>✓</i>	×	✓
TDD	<i>✓</i>	✓	×
TrajectoryNet (Ours)	√	✓	✓

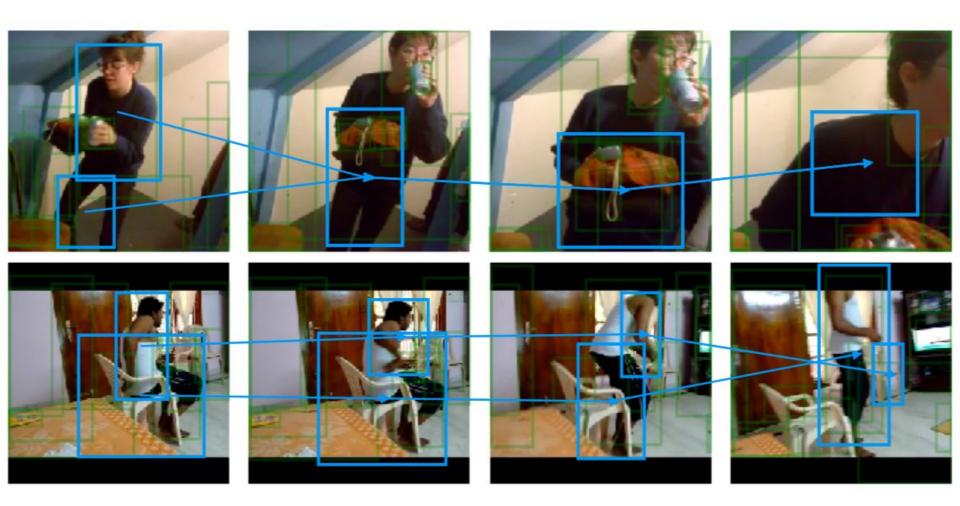
• Achieve competitive results with a relatively small model.

Method	Backbone network	Pre-train	Val Top-1		
3D-CNN [8]	C3D	Sports-1M	11.5		
MultiScale TRN [50]	BN-Inception	ImageNet	34.4		
ECO lite [52]	BN-Inception + 3D-ResNet18	Kinetics	46.4		
Non-local I3D + GCN [44]	ResNet-50	Kinetics	46.1		
TrajectoryNet-MotionNet-(17) w/o. motion	ResNet-18	ImageNet	43.3		
TrajectoryNet-MotionNet-(17) w/. motion	ResNet-18	ImageNet	44.0		
TrajectoryNet-MotionNet-(17) w/o. motion	ResNet-18	Kinetics	47.8		

Videos as Space-Time Region Graphs



Xiaolong, Wang and Abhinav, Gupta. Videos as Space-Time Region Graphs. ECCV 2018 $1 \times d$

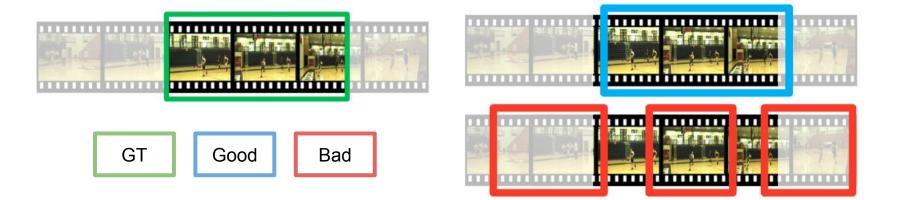


More for Action Understanding

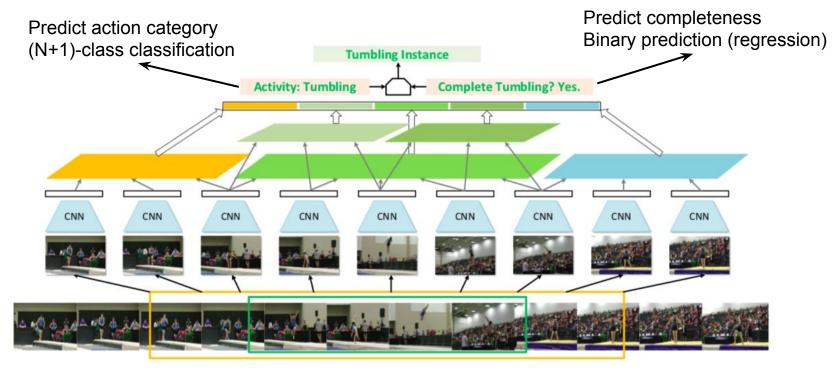
- Temporal action detection
- Spatial temporal action detection

Temporal Action Detection

- Action recognition in trimmed videos (3~10-sec clips) can be done fairly well.
 - Over 90% top-1 accuracy on ActivityNet (200 classes).
 - Nearly 80% top-1 accuracy on Kinetics-400/600.
- Precise temporal localization from untrimmed videos is unsatisfactory.
- Automatic video editing/highlighting; anomaly detection



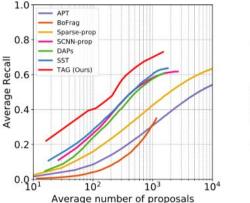
Structured Segment Networks

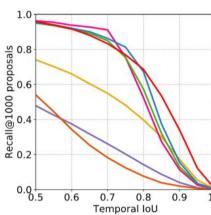


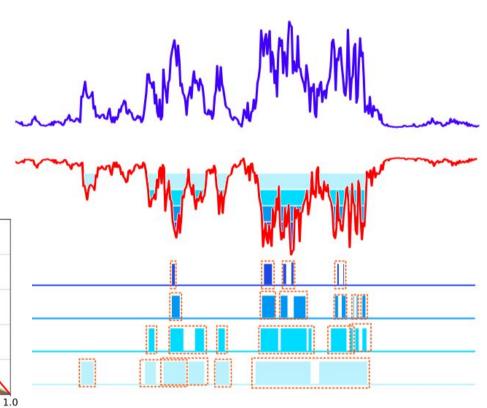
Zhao, Yue, et al. "Temporal action detection with structured segment networks." ICCV. 2017.

Action Proposal Generation via Actionness Grouping

- Sliding windows are redundant and inprecise.
- To alleviate this, temporal actionness group is proposed to generate proposals that are sparse and precise at boundaries.







- State-of-the-Art results on ActivityNet v1.3 and THUMOS14.
- Solid baselines for recently proposed datasets (HACS and COIN).

Hang Zhao, et al. HACS: Human Action Clips and Segments Dataset for Recognition and Temporal Localization, arXiv: 1712.09374. Yansong Tang, et al. COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis. CVPR 2019

Activity Not v1 3 (testing) mAD@g			- THUMOS14, mAP@α							
ActivityNet v1.3 (testing), mAP@ α			Method	0.1	0.2	0.3	0.4	0.5		
Method	0.5	0.75	0.95	Average	Wang et. al. (Wang et al, 2014a)	18.2	17.0	14.0	11.7	8.3
Wang et. al. (Wang and Tao, 2016)	42.48	2.88	0.06	14.62	Oneata et. al. (Oneata et al, 2014)	36.6	33.6	27.0	20.8	14.4
Montes et. al. (Montes et al, 2016)	22.37	14.88	4.45	14.81	Richard et. al. (Richard and Gall, 2016)	39.7	35.7	30.0	23.2	15.2
Singh et. al. (Singh et al, 2016)	28.67	17.78	2.88	17.68	S-CNN (Shou et al, 2016)	47.7	43.5	36.3	28.7	19.0
Singh et. al. (Singh and Cuzzolin, 2016)	36.40	11.05	0.14	17.83	Yeung et. al. (Yeung et al, 2016)	48.9	44.0	36.0	26.4	17.1
R-C3D (Xu et al, 2017)	28.4	_		_	Yuan et. al. (Yuan et al, 2016)	51.4	42.6	33.6	26.1	18.8
		22.17	4.45	22.50	CDC (Shou et al, 2017)	-	-	40.1	29.4	23.3
TCN (Dai et al, 2017)	37.49	23.47	4.47	23.58	R-C3D (Xu et al, 2017)	54.5	51.5	44.8	35.6	28.9
CDC (Shou et al, 2017)	43.0	25.7	0.2	22.9	SSN [†] (ImageNet) (Zhao et al, 2017)	60.3	56.2	50.6	40.8	29.1
SSN (ImageNet) (Zhao et al, 2017)	43.26	28.70	5.63	28.28	SSN* (ImageNet) (Zhao et al, 2017) SSN* (ImageNet) (Zhao et al, 2017)	66.0	59.4	51.9	41.0	29.8
SSN (ImageNet+Kinetics), single model	-	-	-	29.34	SSN [†] (ImageNet+Kinetics)	62.2	58.7	53.3	44.5	33.3
SSN + U-SSN (ImageNet+Kinetics), ensemble	-	- 2	-	31.86	SSN* (ImageNet+Kinetics)	69.3	63.6	55.2	44.8	34.3

Spatial-temporal Action Detection

- Localize the person and determine the action he/she is performing.
- Challenges:
 - Multiple persons in one scene.
 - Diversity of action.
 - Intrinsically imbalanced data.
- Person tracking; patient monitoring

Conclusion

- Action recognition is important for many applications.
- Action understanding is far from being solved.
 - The good: recognition accuracy keeps improving.
 - The bad: more structured analysis is missing temporal localization (detection), spatial-temporal detection, ...
 - The ugly: open problem how do we human perceive and understand action and how can we use such knowledge to help computer do so?

Q&A