
cuhk

Convolutional Nueral Network

Xiaogang Wang

xgwang@ee.cuhk.edu.hk

January 28, 2019

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 1 / 43



cuhk

Convolutional neural network

Specially designed for data with grid-like structures (LeCun et al. 98)
I 1D grid: sequential data
I 2D grid: image
I 3D grid: video, 3D image volume

Beat all the existing computer vision technologies on object recognition on
ImageNet challenge with a large margin in 2012

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 2 / 43



cuhk

Problems of fully connected neural networks

Every output unit interacts with every input unit

The number of weights grows largely with the size of the input image

Pixels in distance are less correlated

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 3 / 43



cuhk

Locally connected neural networks
Sparse connectivity: a hidden unit is only connected to a local patch (weights
connected to the patch are called filter or kernel)

It is inspired by biological systems, where a cell is sensitive to a small sub-region
of the input space, called a receptive field. Many cells are tiled to cover the entire
visual field.

The design of such sparse connectivity is based on domain knowledge. (Can we
apply CNN in frequency domain?)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 4 / 43



cuhk

Locally connected neural networks

The learned filter is a spatially local pattern

A hidden node at a higher layer has a larger receptive field in the input

Stacking many such layers leads to“filters”(not anymore linear) which become
increasingly “global”

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 5 / 43



cuhk

Shared weights

Translation invariance: capture statistics in local patches and they are
independent of locations

I Similar edges may appear at different locations

Hidden nodes at different locations share the same weights. It greatly reduces
the number of parameters to learn

In some applications (especially images with regular structures), we may only
locally share weights or not share weights at top layers

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 6 / 43



cuhk

Convolution

Computing the responses at hidden nodes is equivalent to convoluting the input
image x with a learned filter w

After convolution, a filter map net is generated at the hidden layer

Parameter sharing causes the layer to have equivariance to translation. A
function f (x) is equivalent to a function g if f (g(x)) = g(f (x))

Is convolution equivariant to changes in the scale or rotation?

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 7 / 43



cuhk

Zero-padding in convolutional neural network

The valid feature map is smaller than the input after convolution

Implementation of neural networks needs to zero-pad the input x to make it wider

Without zero-padding, the width of the representation shrinks by the filter width -
1 at each layer

To avoid shrinking the spatial extent of the network rapidly, small filters have to
be used

(Bengio et al. Deep Learning 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 8 / 43



cuhk

Zero-padding in convolutional neural network

By zero-padding in each layer, we prevent the representation from shrinking with
depth. It allows us to make an arbitrarily deep convolutional network

(Bengio et al. Deep Learning 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 9 / 43



cuhk

Downsampled convolutional layer

To reduce computational cost, we may want to skip some positions of the filter
and sample only every s pixels in each direction. A downsampled convolution
function is defined as

net [i, j] = (x ∗ w)[i × s, j × s]

s is referred as the stride of this downsampled convolution

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 10 / 43



cuhk

Multiple filters

Multiple filters generate multiple feature maps

Detect the spatial distributions of multiple visual patterns

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 11 / 43



cuhk

3D filtering when input has multiple feature maps

net =
K∑

k=1

xk ∗ wk

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 12 / 43



cuhk

Convolutional layer

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 13 / 43



cuhk

Nonlinear activation function

tanh()

Rectified linear unit

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 14 / 43



cuhk

Local contrast normalization

Normalization can be done within a neighborhood along both spatial and feature
dimensions

hi+1,x,y,k =
hi,x,y,k − mi,N(x,y,k)

σi,N(x,y,k)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 15 / 43



cuhk

Pooling

Max-pooling partitions the input image into a set of rectangles, and for each
sub-region, outputs the maximum value

Non-linear down-sampling

The number of output maps is the same as the number of input maps, but the
resolution is reduced

Reduce the computational complexity for upper layers and provide a form of
translation invariance

Average pooling can also be used

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 16 / 43



cuhk

Pooling
Pooling without downsampling (stride s = 1)

Invariance vs. information loss (even if the resolution is not reduced)

Pooling is useful if we care more about whether some feature is present than
exactly there it is. It depends on applications.

(Bengio et al. Deep Learning 2014)

Pooling with downsampling (commonly used)

Improve computation efficiency

(Bengio et al. Deep Learning 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 17 / 43



cuhk

Possible extension of pooling

If we pool over the outputs of separately parameterized convolutions, the
features can learn which transformations to become invariant to

How to achieve scaling invariance?

(Bengio et al. Deep Learning 2014)
Example of learned invariances: If each of these filters drive units that appear in the same max-pooling region, then the pooling
unit will detect “5”s in any rotation. By learning to have each filter be a different rotation of the “5” template, this pooling unit has
learned to be invariant to rotation. This is in contrast to translation invariance, which is usually achieved by hard-coding the net to
pool over shifted versions of a single learned filter.

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 18 / 43



cuhk

Typical architecture of CNN

Convolutional layer increases the number of feature maps

Pooling layer decreases spatial resolution

LCN and pooling are optional at each stage

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 19 / 43



cuhk

Typical architecture of CNN

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 20 / 43



cuhk

Typical architecture of CNN

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 21 / 43



cuhk

Typical architecture of CNN

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 22 / 43



cuhk

Typical architecture of CNN

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 23 / 43



cuhk

Typical architecture of CNN

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 24 / 43



cuhk

BP on CNN

Calculate sensitivity (back propagate errors) δ = − ∂J
∂net and update weights in

the convolutional layer and pooling layer

Calculating sensitivity in the convolutional layer is the same as multilayer neural
network

CNN has multiple convolutional layers. Each convolutional layer l has an input feature map (or image) xl and also an output
feature map yl . The sizes (nl

x and nl
y ) of the input and output feature maps, and the filter size d l are different for different

convolutional layers. Each convultional layers has multiple filters, input feature maps and output feature maps. To simplify the
notation, we skip the index (l) of the convolutional layer, and assume only one filter, one input feature map and one output feature
map.

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 25 / 43



cuhk

Calculate ∂net
∂w in the convulutional layer

It is different from neural networks without weight sharing, where each weight Wij

is only related to one input node and one output node

Taking 1D data as example, in CNN, assume the input layer x = [x0, . . . , xnx−1] is
of size nx and the filter w = [w−d , . . . ,wd ] is of size 2 × d + 1. With weight
sharing, each weight in the related with multiple input and output nodes

netj =
d∑

m=−d

wmxj−m

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 26 / 43



cuhk

Update filters in the convolutional layer

∂J
∂wm

=
∑

j

∂J
∂netj

∂netj
∂wm

= −
∑

δjxj−m

The gradient can be calculated from the correlation between the sensitivity map
and the input feature map

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 27 / 43



cuhk

Calculate sensitivities in the pooling layer

The input of a pooling layer l is the output feature map y l of the previous
convolutional layer. The output x l+1 of the pooling layer is the input of the next
convolutional layer l + 1

For max pooling, the sensitivity is propagated according to the corresponding
indices built during max operation. If max pooling regions are nonoverlapped,

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 28 / 43



cuhk

Calculate sensitivities in the pooling layer

If pooling regions are overlapped and one node in the input layer corresponds to
multiple nodes in the output layer, the sensitivities are added

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 29 / 43



cuhk

Calculate sensitivities in the pooling layer

Average pooling

What if average pooling and pooling regions are overlapped?

There is no weight to be updated in the pooling layer

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 30 / 43



cuhk

CNN for object recognition on ImageNet challenge

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Trained on one million images of 1000 categories collected from the web with
two GPU. 2GB RAM on each GPU. 5GB of system memory

Training lasts for one week

Google and Baidu announced their new visual search engines with the same
technology six months after that

Google observed that the accuracy of their visual search engine was doubled

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 31 / 43



cuhk

ImageNet

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 32 / 43



cuhk

Model architecture-AlexNet Krizhevsky 2012

5 convolutional layers and 2 fully connected layers for learning features.

Max-pooling layers follow first, second, and fifth convolutional layers

The number of neurons in each layer is given by 253440, 186624, 64896, 64896,
43264, 4096, 4096, 1000

650000 neurons, 60000000 parameters, and 630000000 connections

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 33 / 43



cuhk

Model architecture-AlexNet Krizhevsky 2012

The first time deep model is shown to be effective on large scale computer vision
task.

The first time a very large scale deep model is adopted.

GPU is shown to be very effective on this large deep model.

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 34 / 43



cuhk

Technical details

Normalize the input by subtracting the mean image on the training set

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 35 / 43



cuhk

Technical details

Choice of activation function

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 36 / 43



cuhk

Technical details

Data augmentation
I The neural net has 60M real-valued parameters and 650,000 neurons
I It overfits a lot. 224 × 224 image regions are randomly extracted from 256

images, and also their horizontal reflections

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 37 / 43



cuhk

Technical details

Dropout
I Independently set each hidden unit activity to zero with 0.5 probability
I Do this in the two globally-connected hidden layers at the net’s output

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 38 / 43



cuhk

96 learned low-level filters

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 39 / 43



cuhk

Classification result

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 40 / 43



cuhk

Detection result

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 41 / 43



cuhk

Top hidden layer can be used as feature for retrieval

(Krizhevsky NIPS 2014)

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 42 / 43



cuhk

Reading materials

Y. Bengio, I. J. GoodFellow, and A. Courville, “Convolutional Networks,” Chapter
11 in “Deep Learning”, Book in preparation for MIT Press, 2014.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,“Gradient-based learning applied
to document recognition,” Proc. of the IEEE, 1998.

J. Bouvrie, “Notes on Convolutional Neural Networks,” 2006.

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Proc. NIPS, 2012.

M. Ranzato, “Neural Networks,” tutorial at CVPR 2013.

Xiaogang Wang (linux) Convolutional Nueral Network January 28, 2019 43 / 43


