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Multi-task Incremental Classification: Baseline



Potential Application Scenarios

• Limited storage budget that can not keep 
all sequential data.

• The collected data will expire due to privacy 
issues.

• Efficient deployment of the model for 
incremental data. 

• ... 
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Finetuning

…

Catastrophic forgetting

Handle Catastrophic Forgetting

How to prevent performance drop 
in the old task during training?

We need an indicator.

How to construct an indicator if we 
do not reserve any of old data?

Take new data as fake old data.
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What if we reserve 
a small faction of 
old data?
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Retrospection 
from old tasks

Adaptation by 
distillation to 

new tasks

Lifelong 
learning … … …

… …

Training Data

Expert CNN for Task 1

...
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Expert CNN for Task 2

Overview of Distillation and Retrospection



Dataset



Some Results



Ablation Study on #Reserved Samples 
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Multi-task Setting

…

…

From Multi-task to Multi-class

There is an oracle to tell 
which classifier should be 
used at inference time.
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Multi-class Setting
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Multi-task Setting

…

…

From Multi-task to Multi-class

There is no oracle here. But can 
we simply adapt distillation and 
retrospection to this setup?



A Toy Example to Visualize Imbalance
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(We will use embedding and the weights of last fully-connected layer alternatively in the following.)
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10 phases 5-phase ablation study

Some Results



Thank you!


