Incremental Classification: First Step into Lifelong Learning

PAN Xinyu MMLab, Department of IE

Multi-task Incremental Classification: Setup

Multi-task Incremental Classification: Setup

Multi-task Incremental Classification: Setup

Multi-task Incremental Classification: Baseline

Feature Extraction Sub-optimal for the new task *Finetuning* Catastrophic forgetting *Re-training* Time consuming

Potential Application Scenarios

. . .

- Limited storage budget that can not keep all sequential data.
- The collected data will expire due to privacy issues.
- Efficient deployment of the model for incremental data.

Lifelong Learning via Progressive Distillation and Retrospection

Saihui Hou^{1*} Xinyu Pan^{2*} Chen Change Loy³ Zilei Wang¹ Dahua Lin²

¹ University of Science and Technology of China ² The Chinese University of Hong Kong ³ Nanyang Technological University [* indicates joint first authorship]

(Accepted in ECCV 2018)

Finetuning Catastrophic forgetting How to prevent performance drop in the old task?

How to prevent performance drop in the old task during training?

We need an *indicator*.

Finetuning Catastrophic forgetting

How to prevent performance drop in the old task during training?

We need an *indicator*.

How to construct an indicator if we do not reserve any of old data?

Finetuning Catastrophic forgetting

How to prevent performance drop in the old task during training?

We need an *indicator*.

How to construct an indicator if we do not reserve any of old data?

Take new data as *fake* old data.

Adaptation by Distillation

Adaptation by Distillation + Retrospection

Overview of Distillation and Retrospection

Table 1. The statistics of the datasets used in this work.

Task	Datasets	#Category	#Training	#Test
ImageNet	ILSVRC-2012 [19]	1000	$1,\!281,\!167$	50,000
Birds	CUB-200-2011 [26]	200	5994	5794
Flowers	Oxford Flowers [18]	102	2040	6149
Scenes	MIT Scenes [19]	67	5360	1340
Aircrafts	FGVC-Aircrafts [16]	100	6667	3333

Some Results

 $(a) Imagenet \rightarrow Scenes \rightarrow Birds \rightarrow Flowers \rightarrow Aircrafts. (b) Imagenet \rightarrow Birds \rightarrow Flowers \rightarrow Aircrafts \rightarrow Scenes.$

Fig. 3. Accuracy degradation on ImageNet in five-task scenario. D for *Distillation*, and R for *Retrospection*.

Ablation Study on #Reserved Samples

Fig. 4. Ablation study on *Retrospection* strategy. Random for random selection, and Center for selecting images close to the class center. The accuracy on the old task increases with the increasing number of images reserved for each class. Choosing images close to the class center is not significantly superior to random selection.

Learning a Unified Classifier Incrementally via Rebalancing

Saihui Hou^{1*} Xinyu Pan^{2*} Chen Change Loy³ Zilei Wang¹ Dahua Lin²

¹ University of Science and Technology of China ² The Chinese University of Hong Kong ³ Nanyang Technological University [* indicates joint first authorship]

(To appear in CVPR 2019)

From Multi-task to Multi-class

Multi-task Setting

There is an oracle to tell which classifier should be used at inference time. From Multi-task to Multi-class

Multi-task Setting

Multi-class Setting

From Multi-task to Multi-class

There is no oracle here. But can we simply adapt distillation and retrospection to this setup?

Multi-task Setting

Multi-class Setting

A Toy Example to Visualize Imbalance

Handle the Imbalance

(We will use *embedding* and the weights of last fully-connected layer alternatively in the following.)

Handle the Imbalance

Less-Forget Constraint

Handle the Imbalance

$$L_{\rm dis}^{\rm G}(x) = 1 - \langle \bar{f}^*(x), \bar{f}(x) \rangle,$$

$$L_{\rm mr}(x) = \sum_{k=1}^{K} \max(m - \langle \bar{\theta}(x), \bar{f}(x) \rangle + \langle \bar{\theta}^k, \bar{f}(x) \rangle, \ 0),$$

$$L = \frac{1}{|\mathcal{N}|} \sum_{x \in \mathcal{N}} (L_{ce}(x) + \lambda L_{dis}^{G}(x)) + \frac{1}{|\mathcal{N}_{o}|} \sum_{x \in \mathcal{N}_{o}} L_{mr}(x),$$

Some Results

5-phase ablation study

Thank you!