Movie Meets Al

Qingqiu Huang

26/03/2019

CONTENTS

1. Introduction

- 2. Tag-based Understand
- 3. Story-based Understand
- 4. Conclusion

/01 Introduction

1. To understand movies is to understand our world

2. Cross-modal & rich resources

- 130K+ Movie Meta Data
 - Cast
 - Genres
 -
- 50K+ Trailers
- 45K+ Plot
- 100M+ Images
 - Poster
 - Profile
- 4000+ Movies
- 1000+ Script

102 Tag-based Understand

Challenge

- Movie is too long! 90min vs. 1min
- Only tag for the whole movie!

Solution

- Take shot as unit
- Train on trailers
- Sparse sampling on training

From Trailers to Storylines: An Efficient Way to Learn from Movies

Qingqiu Huang, Yuanjun Xiong, Yu Xiong, Yuqi Zhang, Dahua Lin

Teenager Retrieval in Tomorrowland

Story-based Understand

- 3348 cast from 630 movies
- More than **1.2M** instances
- Bounding box and identity are manually annotated

• Face Recognition

-- from MS-Celeb-1M

Person Re-identification

-- from MARS

- Most of the instances in movie are without frontal faces -- Face Recognition Failed
- Clothing and makeup would change a lot
 -- Person Re-id Failed

Who are they?

Face + Visual Context + Social Context With

Person-Event

Person-Person

Rose

Jack

Caledon

Molly

Ruth

Brock

Cast Recognition with Context

- Learn instance-specific weights for different regions with a Region Attention Network (RANet) $s(i,j) = \sum_{n=1}^{R} w_i^r w_j^r s^r(i,j)$
- Join person identification with social context learning, including person-person and event-person relations $J(X, Y; \tilde{F}, P, Q | S, F) = \psi_{v}(X | S) + \alpha \cdot \phi_{ep}(Y, X; \tilde{F}, P | F) + \beta \cdot \phi_{pp}(X; Q)$

Unifying Identification and Context Learning for Person Recognition

Qingqiu Huang, Yu Xiong, Dahua Lin Conference of Computer Vision and Pattern Recognition (CVPR) 2018

Region specific Weights

$$s(i,j) = \sum_{r=1}^{R} w_i^r w_j^r s^r(i,|j).$$

$$J(\mathbf{X}, \mathbf{Y}; \widetilde{\mathbf{F}}, \mathbf{P}, \mathbf{Q} \mid \mathbf{S}, \mathbf{F}) = \psi_v(\mathbf{X} \mid \mathbf{S}) + \alpha \cdot \phi_{ep}(\mathbf{Y}, \mathbf{X}; \widetilde{\mathbf{F}}, \mathbf{P} \mid \mathbf{F}) + \beta \cdot \phi_{pp}(\mathbf{X}; \mathbf{Q}).$$

$$\phi_{ep}(\mathbf{Y}, \mathbf{X}; \widetilde{\mathbf{F}}, \mathbf{P} | \mathbf{F}) = \sum_{i=1}^{M} \sum_{k=1}^{K} a_i^k y_i^k$$

with $a_i^k = \sum_{j \in \mathcal{I}_i} \log(\mathbf{p}_k)^T \mathbf{x}_j - \|\mathbf{f}_i - \widetilde{\mathbf{f}}_k\|^2$,

$$\phi_{pp}(\mathbf{X}; \mathbf{Q}) = \sum_{i=1}^{M} \sum_{j \in \mathcal{I}_i} \sum_{j' \in \mathcal{I}_i: j' \neq j} \mathbf{x}_j^T \mathbf{Q} \mathbf{x}_{j'}.$$

Dataset	Split	Existing Methods on PIPA				Ours		
		PIPER	Naeil	RNN	MLC	Baseline	RANet Fusion	Full Model
PIPA	Original	83.05	86.78	84.93	88.20	82.79	87.33	89.73
	Album	-	78.72	78.25	83.02	75.24	82.59	85.33
	Time	-	69.29	66.43	77.04	66.55	76.52	80.42
	Day	-	46.61	43.73	59.77	47.09	65.49	67.16
CIM	-	-	-	-	-	68.12	71.93	72.56

Experiments of Recognition Results

Events Discovered by Our Approach

- A new framework
 - Region Attention Network to adaptively combine visual cues
 - Unify person identification and context learning in joint inference
- Get state-of-the-art performance on PIPA and CIM

Database

Query

Person Search in Videos with one Portrait through Visual and Temporal Links

Qingqiu Huang, Wentao Liu, Dahua Lin European Conference of Computer Vision (ECCV) 2018

Competitive Consensus

- Progressive Propagation
 - mAP: 33.66% -> 47.41%

		IN		ACROSS		
	mAP	R@1	R@3	mAP	R@1	R@3
FACE	53.55	76.19	91.11	42.16	53.15	61.12
LP	8.19	39.70	70.11	0.37	0.41	1.60
PPCC	63.49	83.44	94.40	62.27	62.54	73.86

• Memory

• Speech & Subtitle

... Everyone looks up as a string of sand whizzes past like an express train. As the van doors are closed the sandstorm zooms in like a swarm of angry bees. The weight of the sand presses the accelerator on the van, picks up speed. ...

Everyone looks up as a string of sand whizzes past like an express train.

As the van doors are closed the sandstorm zooms in like a swarm of angry bees.

+

The weight of the sand presses the accelerator on the van, picks up speed.

Find and Focus: Retrieve and Localize Video Events with Natural Language Queries

Dian Shao, Yu Xiong, Yue Zhao, Qingqiu Huang, Dahua Lin

European Conference of Computer Vision (ECCV) 2018

Event Retrieval and Localization by Natural Language

Find and Focus: Retrieve and Localize Video Events with Natural Language Queries

Dian Shao, Yu Xiong, Yue Zhao, **Qingqiu Huang**, Dahua Lin

European Conference of Computer Vision (ECCV) 2018

Event Retrieval and Localization by Natural Language

A river of water is shown. A dog is walking on a leash by the water. A bridge is shown above the water.

A river of water is shown.

A dog is walking on a leash by the water.

A bridge is shown above the water.

- Story-based Summary
- Caption (Story Telling)

/04 Conclusion

- A Large-scale Movie Dataset
- Tag-based Understand
 - Learn from trailers to get shot-level tag response
- Story-based Understand
 - Cast
 - Cast recognition with context
 - Cast search through visual and temporal links
 - Event
 - Hieratical framework for video retrieval by natural language

•

Qingqiu Huang 25/03/2019