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History of neural network

Pioneering work on the mathematical model of neural networks
McCulloch and Pitts 1943
Include recurrent and non-recurrent (with “circles”) networks
Use thresholding function as nonlinear activation
No learning

Early works on learning neural networks
Starting from Rosenblatt 1958
Using thresholding function as nonlinear activation prevented
computing derivatives with the chain rule, and so errors could not
be propagated back to guide the computation of gradients

Backpropagation was developed in several steps since 1960
The key idea is to use the chain rule to calculate derivatives
It was reflected in multiple works, earliest from the field of control
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History of neural network

Standard backpropagation for neural networks
Rumelhart, Hinton, and Williams, Nature 1986. Clearly
appreciated the power of backpropagation and demonstrated it on
key tasks, and applied it to pattern recognition generally
In 1985, Yann LeCun independently developed a learning
algorithm for three-layer networks in which target values were
propagated, rather than derivatives. In 1986, he proved that it was
equivalent to standard backpropagation

Prove the universal expressive power of three-layer neural
networks

Hecht-Nielsen 1989

Convolutional neural network
Introduced by Kunihiko Fukushima in 1980
Improved by LeCun, Bottou, Bengio, and Haffner in 1998
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History of neural network

Deep belief net (DBN)
Hinton, Osindero, and Tech 2006

Auto encoder
Hinton and Salakhutdinov 2006 (Science)

Deep learning
Hinton. Learning multiple layers of representations. Trends in
Cognitive Sciences, 2007.
Unsupervised multilayer pre-training + supervised fine-tuning (BP)

Large-scale deep learning in speech recognition
Geoff Hinton and Li Deng started this research at Microsoft
Research Redmond in late 2009.
Generative DBN pre-training was not necessary
Success was achieved by large-scale training data + large deep
neural network (DNN) with large, context-dependent output layers
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History of neural network

Unsupervised deep learning from large scale images
Andrew Ng et al. 2011
Unsupervised feature learning
16000 CPUs

Large-scale supervised deep learning in ImageNet image
classification

Krizhevsky, Sutskever, and Hinton 2012
Supervised learning with convolutional neural network
No unsupervised pre-training
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Two-layer neural networks model linear classifiers

(Duda et al. Pattern Classification 2000)

g(x) = f (
d∑

i=1

xiwi + w0) = f (wtx)

f (s) =
{

1, if s ≥ 0
−1, if s < 0

.
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Two-layer neural networks model linear classifiers

A linear classifier cannot solve the simple exclusive-OR problem
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Add a hidden layer to model nonlinear classifiers

(Duda et al. Pattern Classification 2000)
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Three-layer neural network
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Three-layer neural network

Net activation: each hidden unit j computes the weighted sum of its
inputs

netj =
d∑

i=1

xiwji + wj0 =
d∑

i=0

xiwji = wt
j x

Activation function: each hidden unit emits an output that is a nonlinear
function of its activation

yj = f (netj )

f (net) = Sgn(net) =

{
1, if net ≥ 0
−1, if net < 0 .

There are multiple choices of the activation function as long as they are
continuous and differentiable almost everywhere. Activation functions could be
different for different nodes.
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Three-layer neural network

Net activation of an output unit k

netk =

nH∑
i=1

yjwkj + wk0 =

nH∑
j=0

yjwkj = wt
k y

Output unit emits

zk = f (netk )

The output of the neural network is equivalent to a set of discriminant
functions

gk (x) = zk = f

 nH∑
j=1

wkj f

(
d∑

i=1

wjixi + wj0

)
+ wk0
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Expressive power of a three-layer neural network

It can represent any discriminant function

However, the number of hidden units required can be very large...

Most widely used pattern recognition models (such as SVM, boosting,
and KNN) can be approximated as neural networks with one or two
hidden layers. They are called models with shallow architectures.

Shallow models divide the feature space into regions and match
templates in local regions. O(N) parameters are needed to represent N
regions.

Deep architecture: the number of hidden nodes can be reduced
exponentially with more layers for certain problems.
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Expressive power of a three-layer neural network
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Expressive power of a three-layer neural network

(Duda et al. Pattern Classification 2000)

With a tanh activation function f (s) = (es − e−s)/(es + e−s), the hidden unit outputs
are paired in opposition thereby producing a “bump” at the output unit. With four hidden
units, a local mode (template) can be modeled. Given a sufficiently large number of
hidden units, any continuous function from input to output can be approximated
arbitrarily well by such a network.

Xiaogang Wang MultiLayer Neural Networks



cuhk

Feedforward Operation
Backpropagation

Discussions

Backpropagation

The most general method for supervised training of multilayer neural
network

Present an input pattern and change the network parameters to bring
the actual outputs closer to the target values

Learn the input-to-hidden and hidden-to-output weights

However, there is no explicit teacher to state what the hidden unit’s
output should be. Backpropagation calculates an effective error for each
hidden unit, and thus derive a learning rule for the input-to-hidden
weights.
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A three-layer network for illustration

(Duda et al. Pattern Classification 2000)
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Training error

J(w) =
1
2

c∑
k=1

(tk − zk )2 =
1
2
||t− z||2

Differentiable

There are other choices, such as cross entropy

J(w) = −
c∑

k=1

tk log(zk )

Both {zk} and {tk} are probability distributions.
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Gradient descent

Weights are initialized with random values, and then are changed in a
direction reducing the error

∆w = −η ∂J
∂w

,

or in component form

∆wpq = −η ∂J
∂wpq

where η is the learning rate.

Iterative update
w(m + 1) = w(m) + ∆w(m)
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Hidden-to-output weights wkj
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Hidden-to-output weights wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= −δk
∂netk
∂wkj

Sensitivity of unit k

δk = − ∂J
∂netk

= − ∂J
∂zk

∂zk

∂netk
= (tk − zk )f ′(netk )

Describe how the overall error changes with the unit’s net activation.

Weight update rule. Since ∂netk/∂wkj = yj ,

∆wkj = ηδk yj = η(tk − zk )f ′(netk )yj .
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Activation function

Sign function is not a good choice for f (·). Why?
Popular choice of f (·)

Sigmoid function

f (s) =
1

1 + e−s

Tanh function (shift the center of Sigmoid to the origin)

f (s) =
es − e−s

es + e−s

Hard thanh
f (s) = max(−1,min(1, x))

Rectified linear unit (ReLU)

f (s) = max(0, x)

Softplus: smooth version of ReLU

f (s) = log(1 + es)
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Activation function

Popular choice of f (·)
Softmax: mostly used as output non-linearrity for predicting
discrete probabilities

f (sk ) =
esk∑C

k′=1 esk′

Maxout: it generalizes the rectifier assuming there are multiple net
activations

f (s1, . . . , sn) = max
i

(si )
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Example 1

Choose squared error as training error measurement and sigmoid as
activation function at the output layer

When the output probabilities approach to 0 or 1 (i.e. saturate), f ′(net)
gets close to zero and δk is small even if the error (tk − zk ) is large,
which is bad.
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Example 2

Choose cross entropy as training error measurement and softmax as
activation function at the output layer

Sensitivity δk = −tk (zk − 1) (how to get it?)

δk is large if error is large, even if zk gets close to 0

Softmax leads to sparser output
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Input-to-hidden weights
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Input-to-hidden weights

∂J
∂wij

=
∂J
∂yj

∂yj

∂netj
∂netj
∂wij

How the hidden unit output yj affects the error at each output unit

∂J
∂yj

=
∂

∂yj

[
1
2

c∑
k=1

(tk − zk )2

]

=−
c∑

k=1

(tk − zk )
∂zk

∂yj

=−
c∑

k=1

(tk − zk )
∂zk

∂netk
∂netk
∂yj

=−
c∑

k=1

(tk − zk )f ′(netk )wkj =
c∑

k=1

δk wkj
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Input-to-hidden weights

Sensitivity for a hidden unit j

δj = − ∂J
∂netj

= − ∂J
∂yj

∂yj

∂netj
= f ′(netj )

c∑
k=1

wkjδk

∑c
k=1 wkjδk is the effective error for hidden unit j

Weight update rule. Since ∂netj/∂wji = xi ,

∆wji = ηxiδj = ηf ′(netj )

[
c∑

k=1

wkjδk

]
xi
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Error backpropagation

(Duda et al. Pattern Classification 2000)

The sensitivity at a hidden unit is proportional to the weighted sum of the
sensitivities at the output units: δj = f ′(netj )

∑c
k=1 wkjδk . The output unit

sensitivities are thus propagated “back” to the hidden units.
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Stochastic gradient descent

Given n training samples, our target function can be expressed as

J(w) =
n∑

p=1

Jp(w)

Batch gradient descent

w← w− η
n∑

p=1

∇Jp(w)

In some cases, evaluating the sum-gradient may be computationally
expensive. Stochastic gradient descent samples a subset of summand
functions at every step. This is very effective in the case of large-scale
machine learning problems. In stochastic gradient descent, the true
gradient of J(w) is approximated by a gradient at a single example (or a
mini-batch of samples):

w← w− η∇Jp(w)
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Stochastic backpropagation

(Duda et al. Pattern Classification 2000)

In stochastic training, a weight update may reduce the error on the
single pattern being presented, yet increase the error on the full training
set.
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Mini-batch based stochastic gradient descent

Divide the training set into mini-batches.

In each epoch, randomly permute mini-batches and take a mini-batch
sequentially to approximate the gradient

One epoch corresponds to a single presentations of all patterns in
the training set

The estimated gradient at each iteration is more reliable

Start with a small batch size and increase the size as training proceeds
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Batch backpropagation
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Summary

Stochastic learning

Estimate of the gradient is noisy, and the weights may not move
precisely down the gradient at each iteration
Faster than batch learning, especially when training data has
redundance
Noise often results in better solutions
The weights fluctuate and it may not fully converge to a local
minimum

Batch learning

Conditions of convergence are well understood
Some acceleration techniques only operate in batch learning
Theoretical analysis of the weight dynamics and convergence
rates are simpler
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Plot learning curves on the training and validation sets

(Duda et al. Pattern Classification 2000)

Plot the average error per pattern (i.e. 1/n
∑

p Jp) versus the number of
epochs.

Xiaogang Wang MultiLayer Neural Networks



cuhk

Feedforward Operation
Backpropagation

Discussions

Learning curve on the training set

The average training error typically decreases with the number of
epochs and reaches an asymptotic value

This asymptotic value could be high if underfitting happens. The
reasons could be

The classification problem is difficult (Bayes error is high) and
there are a large number of training samples
The expressive power of the network is not enough (the numbers
of weights, layers and nodes in each layer)
Bad initialization and get stuck at local minimum (pre-training for
better initialization)

If the learning rate is low, the training error tends to decrease
monotonically, but converges slowly. If the learning rate is high, the
training error may oscillate.
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Learning curve on the test and validation set

The average error on the validation or test set is virtually always higher
than on the training set. It could increase or oscillate when overfitting
happen. The reasons could be

Training samples are not enough
The expressive power of the network is too high
Bad initialization and get stuck at local minimum (pre-training for
better initialization)

Stop training at a minimum of the error on the validation set
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BP on general flow graphs

BP be applied to a general flow graph, where each node ui is the value
obtained with a computation unit and partial orders are defined on
nodes. j < i means uj is computed before ui

The final node is the objective function depending on all the other nodes

Directed acyclic graphs

Example: network with skipping layers (i.e. connecting non-adjacent
layers)
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BP is an application of the chain rule

∂C(g(θ))

∂θ
=
∂C(g(θ))

∂g(θ)

∂g(θ)

∂θ

(Bengio et al. Deep Learning 2014)
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Flow graph forward computation

u1, . . . , uN are the nodes with defined partial orders
ai = (uj )j∈parents(i) is the set of parents of node ui and ui = fi (ai )

(Bengio et al. Deep Learning 2014)
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BP on a flow graph

(Bengio et al. Deep Learning 2014)

∂uN

∂wji
=
∂uN

∂ui

∂ui

∂neti
∂neti
∂wji

=
∂uN

∂ui
f ′(neti )uj

BP has optimal computational complexity in the sense that there is no
algorithm that can compute the gradient faster (in the O(·) sense)

It is an application of the principles of dynamic programming
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BP on a flow graph

The derivative of the output with respect to any node can be written in
the following intractable form:

where the graphs uk1 , . . . , ukn go from the node k1 = i to the final node
kn = N in the flow graph. Computing the sum as above would be intractable
because the number of possible paths can be exponential in the depth of the
graph. BP is efficient because it employs a dynamic programming strategy to
re-use rather than re-compute partial sums associated with the gradients on
intermediate nodes.
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Nonlinear feature mapping

(Duda et al. Pattern Classification 2000)
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Nonlinear feature mapping

The multilayer neural networks provide nonlinear mapping of the input
to the feature representation at the hidden units

With small initial weights, the net activation of each hidden unit is small,
and thus the linear portion of their activation function is used. Such a
linear transformation from x to y leaves the patterns linearly inseparable
in the XOR problem.

As learning progresses and the input-to-hidden weights increase in
magnitude, the nonlinearities of the hidden units warp and distort the
mapping from input to the hidden unit space

The linear decision boundary at the end of learning found by the
hidden-to-output weights is shown by the straight dashed line; the
nonlinearly separable problem at the inputs is transformed into a
linearly separable at the hidden units
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Nonlinear feature mapping

(Duda et al. Pattern Classification 2000)

The expressive power of the 2-2-1 network is not high enough to
separate all the seven patterns, even after the global minimum error is
reached by training.

These patterns can be separated by increasing one more hidden unit to
enhance the expressive power.
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Filter learning

The input-to-hidden weights at a single hidden unit describe the input patterns
that leads to maximum activation of that hidden unit, analogous to a “matched
filter”
Hidden units find feature groupings useful for the linear classifier implemented by
the hidden-to-output layer weights

(Duda et al. Pattern Classification 2000)
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Filter learning

The top images represent patterns from a large training set used to train a
64-2-3 neural network for classifying three characters

The bottom figures show the input-to-hidden weights, represented as patterns, at
the two hidden units after training

One hidden unit is tuned to a pair of horizontal bars while the other is tuned to a
single lower bar

Both of these feature groups are useful building blocks for the pattern presented
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A recommended sigmoid function for activation
function

f (x) = 1.79159
e

2
3 x − e−

2
3 x

e
2
3 x + e−

2
3 x

f (±1) = ±1, liner in the range of −1 < x < 1, f ′′(x) has extrema near
x = ±1.

Y. LeCun, Generalization and network design strategies. Proc. Int’l Cibf,
Cinectuibusn ub Oersoectuve, 1988.
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Desirable properties of activation functions

Must be nonlinear: otherwise it is equivalent to a linear classifier

Its output has maximum and minimum value: keep the weights and
activations bounded and keep training time limited

Desirable property when the output is meant to represent a
probability
Desirable property for models of biological neural networks, where
the output represents a neural firing rate
May not be desirable in networks for regression, where a wide
dynamic range may be required

Continuous and differentiable almost everywhere

Monotonicity: otherwise it introduces additional local extrema in the
error surface

Linearity for a small value of net, which will enable the system to
implement a linear model if adequate for yielding low error
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Desirable properties of activation functions

The average of the outputs at a node is close to zero because these
outputs are the inputs to the next layer

The variance of the outputs at a node is also 1.
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Global versus local representations

Tanh function (shifting the center of sigmoid to 0) has all the properties
above

It has large response for input in a large range. Any particular
input x is likely to yield activity through several hidden units. This
affords a distributed or global representation of the input.
If hidden units have activation functions that have significant
response only for input within a small range, then an input x
generally leads to fewer hidden units being active - a local
representation.
Distributed representations are superior because more of the data
influences the posteriors at any given input region.
The global representation can be better achieved with more layers
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Global versus local representations
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Choosing target values

Avoid setting the target values as the sigmoid’s asymptotes

Since the target values can only be achieved asymptotically, it
drives the output and therefore the weights to be very large, which
the sigmoid derivative is close to zero. So the weights may
become stuck.
When the outputs saturate, the network gives no indication of
confidence level. Large weights fore all outputs to the tails of the
sigmoid instead of being close to decision boundary.

Insure that the node is not restricted to only the linear part of the
sigmoid

Choose target values at the point of the maximum second derivative on
the sigmoid so as to avoid saturating the output units
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Initializing weights

Randomly initialize weights in the linear region. But they should be
large enough to make learning proceed.

The network learns the linear part of the mapping before the more
difficult nonlinear parts
If weights are too small, gradients are small, which makes learning
slow

To obtain a standard deviation close to 1 at the output of the first hidden
layer, we just need to use the recommended sigmoid and require that
the input to the sigmoid also have a standard deviation σy = 1.
Assuming the inputs to a unit are uncorrelated with variance 1, the
standard deviation of σyi is

σyi = (
m∑

j=1

w2
ij )1/2
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Initializing weights

To ensure σyi = 1, weights should be randomly drawn from a
distribution (e.g. uniform) with mean zero and standard deviation

σw = m−1/2
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