
cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Optimization for Training Deep Models

Xiaogang Wang

xgwang@ee.cuhk.edu.hk

February 12, 2019

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Outline

1 Optimization Basics

2 Optimization of training deep neural networks

3 Multi-GPU Training

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Training neural networks

Minimize the cost function on the training set

θ∗ = arg min
θ

J(X(train), θ)

Gradient descent
θ = θ − η∇J(θ)

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Local minimum, local maximum, and saddle points
When ∇J(θ) = 0, the gradient provides no information about which
direction to move
Points at ∇J(θ) = 0 are known as critical points or stationary points
A local minimum is a point where J(θ) is lower than at all neighboring
points, so it is no longer possible to decrease J(θ) by making
infinitesimal steps
A local maximum is a point where J(θ) is higher than at all neighboring
points, so it is no longer possible to increase J(θ) by making
infinitesimal steps
Some critical points are neither maxima nor minima. These are known
as saddle points

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Local minimum, local maximum, and saddle points
In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points
surrounded by very flat regions. All of this makes optimization very
difficult, especially when the input to the function is multidimensional.
We therefore usually settle for finding a value of J that is very low, but
not necessarily minimal in any formal sense.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Jacobian matrix and Hessian matrix

Jacobian matrix contains all of the partial derivatives of all the elements
of a vector-valued function

Function f : Rm →Rn, then the Jacobian matrix J ∈ Rn×m of f is
defined such that Ji,j = ∂

∂xj
f (x)i

The second derivative ∂2

∂xi∂xj
f tells us how the first derivative will change

as we vary the input. It is useful for determining whether a critical point
is a local maximum, local minimum, or saddle point.

f ′(x) = 0 and f ′′(x) > 0: local minimum
f ′(x) = 0 and f ′′(x) < 0: local maximum
f ′(x) = 0 and f ′′(x) = 0: saddle point or a part of a flat region

Hessian matrix contains all of the second derivatives of the
scalar-valued function

H(f)(x)i,j =
∂2

∂xi∂xj
f (x)

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Jacobian matrix and Hessian matrix

At a critical point, ∇f (x) = 0, we can examine the eigenvalues of the
Hessian to determine whether the critical point is a local maximum.
local minimum, or saddle point

When the Hessian is positive definite (all its eigenvalues are
positive), the point is a local minimum: the directional second
derivative in any direction must be positive
When the Hessian is negative definite (all its eigenvalues are
negative), the point is a local maximum
Saddle point: at least one eigenvalue is positive and at least one
eigenvalue is negative. x is a local maximum on one cross section
of f but a local maximum on another cross section.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Saddle point

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Hessian matrix

Condition number: consider the function f (x) = A−1x. When A ∈ Rn×n

has an eigenvalue decomposition, its condition number

max
i,j
|λi

λj
|

i.e. the ratio of the magnitude of the largest and smallest eigenvalue.
When this number is large, matrix inversion is particularly sensitive to
error in the input

The Hessian can also be useful for understanding the performance of
gradient descent. When the Hessian has a poor condition number,
gradient descent performs poorly. This is because in one direction, the
derivative increases rapidly, while in another direction, it increases
slowly. Gradient descent is unaware of this change in the derivative so it
does not know that it needs to explore preferentially in the direction
where the derivative remains negative for longer.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Hessian matrix

Gradient descent fails to exploit the curvature information contained in Hessian. Here we use gradient descent on a
quadratic function whose Hessian matrix has condition number 5. The red lines indicate the path followed by
gradient descent. This very elongated quadratic function resembles a long canyon. Gradient descent wastes time
repeatedly descending canyon walls, because they are the steepest feature. Because the step size is somewhat too
large, it has a tendency to overshoot the bottom of the function and thus needs to descend the opposite canyon wall
on the next iteration. The large positive eigenvalue of the Hessian corresponding to the eigenvector pointed in this
direction indicates that this directional derivative is rapidly increasing, so an optimization algorithm based on the
Hessian could predict that the steepest direction is not actually a promising search direction in this context.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Second-order optimization methods

Gradient descent uses only the gradient and is called first-order
optimization. Optimization algorithms such as Newton’s method that
also use the Hessian matrix are called second-order optimization
algorithms.

Newton’s method on 1D function f (x). The second-order Taylor
expansion fT (x) of a function f around xn is

fT (x) = fT (xn + ∆x) ≈ f (xn) + f ′(xn)∆x +
1
2

f ′′(xn)∆x2

Ideally, we want to pick a ∆x such that xn + ∆x is a stationary point of f .
Solve for the ∆x corresponding to the root of the expansion’s derivative:

0 =
d

d∆x

(
f (xn) + f ′(xn)∆x +

1
2

f ′′(xn)∆x2
)

= f ′(xn) + f ′′(xn)∆x

∆x = −[f ′′(xn)]−1f ′(xn)

The update rule therefore is
xn+1 = xn + ∆x

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Second-order optimization methods
The 1D function update can be illustrated as follows

If we extend the 1D function to a multi-dimension function. The update
rule of Newton’s method becomes

xn+1 = xn − H(f)(xn)−1∇xf (xn)

When the function can be locally approximated as quadratic, iteratively
updating the approximation and jumping to the minimum of the
approximation can reach the critical point much faster than gradient
descent would.
In many other fields, the dominant approach to optimization is to design
optimization algorithms for a limited family of functions.
The family of functions used in deep learning is quite complicated and
complex

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Data augmentation

If the training set is small, one can synthesize some training samples by
adding Gaussian noise to real training samples

Domain knowledge can be used to synthesize training samples. For
example, in image classification, more training images can be
synthesized by translation, scaling, and rotation.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Data augmentation

Change the pixels without
changing the label
Train on transformed data
Very widely used in practice

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Data augmentation

Horizontal flipping

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Data augmentation

Random crops/scales
Training for image classification
networks (AlexNet/VGG/ResNet)

Pick random L in range [256,480]
Resize training image, short side = L
Sample random 224× 224 patch

Testing: average a fixed set of crops

Resize image at 5 scales:
{224,256,384,480,640}
For each size, use 10 224× 224
crops: 4 corners + center, + flips

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Data augmentation

Color jitter
Simple: randomly
jitter contrast

Complex:

Apply PCA to all [R, G, B]
pixels in training set

Sample a “color offset” along
principal component directions

Add offset to all pixels of a
training image

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Data augmentation

Get creative!
Random mix/combinations of :

Translation

Rotation

Stretching

shearing

lens distortions

etc.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Normalizing input

If the dynamic range of one input feature is much larger than others,
during training, the network will mainly adjust weights on this feature
while ignore others

We do not want to prefer one feature over others just because they
differ solely measured units

To avoid such difficulty, the input patterns should be shifted so that the
average over the training set of each feature is zero, and then be scaled
to have the same variance as 1 in each feature

Input variables should be uncorrelated if possible

If inputs are uncorrelated then it is possible to solve for the value
of one weight without any concern for other weights
With correlated inputs, one must solve for multiple weights
simultaneously, which is a much harder problem
PCA can be used to remove linear correlations in inputs

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Shuffling the training samples

Networks learn the fatest from the most unexpected sample

Shuffle the training set so that successive training examples never
(rarely) belong to the same class

Present input examples that produce a large error more frequently than
examples that produce a small error

This technique applied to data containing outliers can be
disastrous because outliers can produce large errors yet should
not be presented frequently

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Dropout
Radomly set some input features and the ouputs of hidden units as zero
during the training process

Feature co-adaptation: a feature is only helpful when other specific
features are present

Because of the existence of noise and data corruption, some
features or the responses of hidden nodes can be misdetected

Dropout prevents feature co-adaptation and can significantly improve
the generalization of the trained network
Can be considered as another approach to regularization
It can be viewed as averaging over many neural networks
Slower convergence

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Error surfaces
Backpropagation is based on gradient descent and tries to find the
minimum point of the error surface J(w)

Generally speaking, it is unlikely to find the global minimum since the
error surface is usually very complex
Backpropagation stops at local minimum and plateaus (regions where
error varies only slightly as a function of weights)
Therefore, it is important to find a good initialization for backpropagation
(through pre-training)

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Learning rate

Decrease the learning rate when the weight vector “oscillates” and
increase it when the weight vector follows a steady direction

One can choose a different learning rate for each weights, so that all the
weights in the network converge roughly at the same speed

Gradient descent in a 1D quadratic criterion with different learning rates. The

optimal learning rate is found by ηopt =
(
∂2J
∂w2

)−1
.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Learning rate

Learning rates in the lower layers should generally be larger than in the
higher layers, since the second derivative is often smaller in the lower
layers

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Learning rate

Example of linear network trained in a batch mode.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Learning rate

Stochastic learning with η = 0.2

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Incorporation of momentum

Error surfaces often have plateaus where there are “to many” weights
(especially when the number of layers is large) and thus the error
depends only weakly upon any one of them.

Include some fraction α of the previous weight update in stochastic
backpropagation

w(m + 1) = w(m) + (1− α)∆wbp(m) + α∆w(m)

where ∆wbp(m) is the change in w(m) that would be called for by the
backpropagation algorithm

∆w(m) = w(m)−w(m − 1)

Allow the network to learn more quickly when plateaus in the error
surface exists

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Incorporation of momentum

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Plateaus and cliffs
The error surfaces of training deep neural networks include local minima,
plateaus (regions where error varies only slightly as a function of weights), and
cliffs (regions where the gradients rise sharply)

Plateaus and cliffs are more important barriers to training neural networks than
local minima

It is very difficult (or slow) to effectively update the parameters in plateaus
When the parameters approach a cliff region, the gradient update step can
move the learner towards a very bad configuration, ruining much progress
made during recent training iterations.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Higher-order nonlinearities

Second-order methods or momentum assume quadratic shape around
the minimum. They increase the size of steps in the low-curvature
directions and decrease the sizes of steps in the high-curvature
directions (the steep sides of the valley)

When training deep models, higher order derivatives introduce a lot
more non-linearity, which often does not have the nice symmetrical
shapes that the second-order “valley” picture builds in our mind

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Gradient clipping

To address the presence of cliffs, a useful heuristic is to clip the
magnitude of the gradient, only keeping its direction if its magnitude is
below a threshold (which is a hyper-parameter). This helps to avoid the
destructive big moves which would happen when approaching the cliff,
either from above or below.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Vanishing and exploding gradients

Training a very deep net makes the problem even more serious, since
after BP through many layers, the gradients become either very small or
very large
In very deep nets and recurrent nets, the final output is composed of a
large number of non-linear transformations
Even though each of these non-linear stages may be relatively smooth,
their composition is going to be much “more non-linear”, in the sense
that the derivatives through the whole composition will tend to be either
very small or very large, with more ups and downs

When composing many non-linearities (like the activation non-linearity in a deep or
recurrent neural network), the result is highly non-linear, typically with most of the
values associated with a tiny derivative, some values with a large derivative, and many
ups and downs (not shown here)

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Vanishing and exploding gradients

This arises because the Jacobian (matrix of derivatives) of a composition is
the product of the Jacobian of each stage, i.e. if

f = fT ◦ fT−1 ◦ . . . f2 ◦ f1

The Jacobian matrix of derivatives of f (x) with respect to its input vector x is

f ′ = f ′T f ′T−1 . . . f
′
2f ′1

where
f ′ =

∂f (x)

∂x
and

f ′t =
∂ft (αt)

∂αt

where αt = ft−1(ft−1(. . . f2(f1(x)))), i.e. composition has been replaced by
matrix multiplication

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Vanishing and exploding gradients

In the scalar case, we can imagine that multiplying many numbers
together tends to be either very large or very small

In the special case where all the numbers in the product have the same
value α, this is obvious, since αT goes to 0 if α < 1 and to∞ if α > 1 as
T increases

The more general case of non-identical numbers be understood by
taking the logarithm of these numbers, considering them to be random,
and computing the variance of the sum of these logarithms. Although
some cancellation can happen, the variance grows with T . If those
numbers are independent, it grows linearly with T , which means that
the product grows roughly as eT .

This analysis can be generalized to the case of multiplying square
matrices

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Internal Covariate Shift

The inputs to each layer are affected by the parameters of all
preceeding layers, and small changes to the network parameters
amplify as the network becomes deeper.

Because of the change in the distributions of layers’ inputs
(called covariate shift), the layers need to continuously adapt to
the new distribution

Consider an objective function of a network,

J = F2(F1(u,Θ1),Θ2)

where F1 and F2 are arbitrary transformations at different layers,
and Θ1, Θ2 are parameters to be learned. Learning Θ2 can be
viewed as if the inputs y = F1(x,Θ1) are fed to the sub-network

J = F2(y,Θ2)

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Internal Covariate Shift

In order to learn Θ2 efficiently, the distribution of y should remain
fixed over time, so that Θ2 does not have to readjust to
compensate for the change in the distribution of y

One should keep net = Wx + w0 away from the saturation
range, where the gradients of the nonlinear activation function
tend to be zero. Since net is affected by W, w0 and the
parameters of all the layers below, changes to these parameters
during training will likely move many dimensions of net into the
saturated region of the nonlinearity and slow down depth
increases. This problem was once addressed by careful
initialization and small learning rates.

If we could ensure that the distribution of nonlinearity inputs
remains more stable as the network trains, the optimizer would
be less likely to get stuck in the satruated region, and the
training would accelerate.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Batch Normalization

A normalization step that fixes the means and variances of layer
input

Reduce the dependence of gradients on the scale of the
parameters or of their initial values

It allows to use much higher learning rates without the risk of
divergence

Make it possible to use saturating nonlinearities by preventing
the network from getting stuck in the saturated modes

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Batch Normalization in every layer

Input: values of x over a mini-batch: B = {x(1), . . . ,x(m)}

Output: {net(n) = BNW,w0 (x(n))}

µBi ←
1
m

m∑
n=1

x(n)
i

(σBi)2 ← 1
m

m∑
n=1

(x(n)
i − µ

B
i)2

x̂(n)
i ←

x(n)
i − µBi√
(σBi)2 + ε

net(n) ←Wx̂(n) + w0 ≡ BNW,w0 (x(n))

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Batch Normalization - BP

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Batch Normalization - BP

∂J

∂x̂(n)
i

=
∑

j

∂J

∂net(n)j

·Wji

∂J
∂(σBi)2 =

m∑
n=1

∂J

∂x̂(n)
i

· (x(n)
i − µ

B
i) · −1

2
((σBi)2 + ε)−3/2

∂J
∂µBi

=

(
m∑

n=1

∂J

∂x̂(n)
i

· −1√
(σBi)2 + ε

)
+

∂J
∂(σBi)2 ·

∑m
n=1−2(x(n)

i − µ
B
i)

m

∂J

∂x(n)
i

=
∂J

∂x̂(n)
i

· 1√
(σBi)2 + ε

+
∂J

∂(σBi)2 ·
2(x(n)

i − µ
B
i)

m
+

∂J
∂µBi

· 1
m

∂J
∂Wji

=
m∑

n=1

∂J

∂net (n)j

x̂(n)
i

∂J
∂wj0

=
m∑

n=1

∂J

∂net (n)j

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Other Normalization Approaches

Layer normalization (normalize the feature of each sample
individually)
[1] Jimmy Ba, Layer Normalization, arXiv, 2016

Weight normalization (normalize the parameters)
[2] Tim Salimans, Weight Normalization: A Simple Reparameterization to
Accelerate Training of Deep Neural Networks, NIPS, 2016

Normalization propagation (normalize both the input and
parameters)
[3] Normalization Propagation: A Parametric Technique for Removing Internal
Covariate Shift in Deep Networks, ICML, 2016

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Other Gradient-based Optimizers

The mini-batch Stochastic Gradient Descent (SGD) optimizer is
the one of the most frequently used optimizer in practice

Vanilla mini-batch gradient descent shows a few challenges that
need to be addressed

Choosing a proper learning rate can be difficult.
Learning rate schedules try to adjust the learning rate during
training by reducing the learning rate according to a pre-defined
schedule or when the change in objective between epochs falls
below a threshold
The same learning rate applies to all parameter updates. If
features have different frequencies, we might not want to update
all of them to the same extent, but perform a larger update for
rarely occurring features.
How to avoid getting trapped in their numerous suboptimal local
minima. Some argue that the difficulty arises in fact not from local
minima but from saddle points

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adagrad

It adapts the learning rate to the parameters and use a different
learning rate for each parameter
Performing smaller updates for parameters associated with
frequently occurring features
Performing larger updates for parameters associated with
infrequent features
It is therefore well-suited for dealing with sparse data
Pennington et al. used Adagrad to train GloVe word
embeddings, as infrequent words require much larger updates
than frequent ones.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adagrad
Adagrad uses a different learning rate for every parameter θi at
every time step t
We use gt to denote the gradient at time step t . gt,i is then the
partial derivative of the objective function w.r.t. to the parameter
at time step t

gt,i = ∇θJ(θt,i)

The conventional SGD update for every parameter θi at each
time step t then becomes

θt+1,i = θt,i − η · gt,i

Adagrad modifies the general learning rate η at each time step t
for every parameter θi based on the past gradients that have
been computed for θi

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i

Gt ∈ Rd×d is a diagonal matrix where each diagnoal element i , i
is the sum of the squares of the gradients w.r.t. θi up to time step
t , and ε is generally set to 10−8

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adagrad

We vectorize by a matrix-vector product � between Gt and gt

θt+1 = θt −
η√

Gt + ε
� gt

One of Adagrad’s main benefits is that it eliminates the need to
manually tune the learning rate
Most implementations use a default learning rate of 0.01 and
leave it at that
Interestingly, without the square root operation, the algorithm
performs much worse

Adagrad’s main weakness is its accumulation of the squared
gradients in the denominator.
The accumulated sum keeps growing during training and the
learning rate eventually becomes infinitesimally small
At this point, the algorithm is no longer able to acquire additional
knowledge

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adadelta

Adadelta is proposed to reduce its aggressive, monotonically
decreasing learning rate
Instead of accumulating all past squared gradients, Adadelta
restricts the window of accumulated past gradients to some fixed
time size w
The running average E [g2]t at time step t then depends only on
the previous average and the current gradient

E [g2]t = γE [g2]t−1 + (1− γ)g2
t

We set γ to a similar value as the momentum term, around 0.9
We now simply repleace the diagonal matrix Gt with past
squared gradients E [g2]t The parameter update vector is
reformulated as

∆θt = − η√
E [g2]t + ε

= − η

RMS[g]t
gt , and θt+1 = θt + ∆θt

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adadelta

The authors note that the units in the previous update do not
match the hypothetical units as the parameter
To resolve the issue, they first define another exponentially
decaying average as squared parameter updates

E [∆θ2]t = γE [∆θ2]t−1 + (1− γ)∆θ2
t

The root mean squared error of parameter updates is thus

RMS[∆θ]t =
√

E [∆θ2]t + ε

Since RMS[∆θ2]t is unknown, we approximate it with the RMS of
parameter updates until the previous time step RMS[∆θ2]t−1.
Replacing learning rate η in the previous update rule with
RMS[∆θ2]t−1 yields the Adadelta update rule

∆θt = −RMS[∆θ]t−1

RMS[g]t
gt , and the update rule is θt+1 = θt + ∆θt

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

RMSprop

RMSprop and Adadelta have both been developed
independently around the same time stemming from the need to
resolve Adagrad’s radically diminishing learning rates
RMSprop is developed by Geoff Hinton in a Coursera course
RMSprop in fact is identical to the first update vector of Adadelta
that we derived above

E [g2]t = γE [g2]t−1 + (1− γ)g2
t

Update rule: θt+1 = θt −
η√

E [g2]t + ε

Hinton suggests γ to be set to 0.9, while a good default value for
the learning rate η is 0.001.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adam
Adaptive Moment Estimation (Adam) is another method that
computes adaptive learning rates for each parameter
In addition to storing an exponentially decaying average of past
squared gradients vt like Adadelta and RMSprop, Adam also
keeps an exponentially decaying average of past gradients mt ,
similar to momentum

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

mt and vt are estimates of the first moment (mean) and the
second moment (uncentered variance) of the gradients
m0 and v0 are initialized as vectors of 0’s. However, the authors
of Adam observe that they are biased towards zero, especially
during the initial time steps, and especially when the decay rates
are small

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adam

They counteract these biases by computing bias-corrected first
and second moment estimates

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

The Adam update rule is therefore defined as

θt+1 = θt −
η√

v̂t + ε
m̂t

The authors propose default values of 0.9 for β1, 0.999 for β2,
and 10−8 for ε . Almost no one ever changes these values.
They show empirically that Adam works well in practice and
compares favorably to other adaptive learning-method
algorithms.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Adam

The performance comparison on MINST classification with
different optimizers

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

CPU

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

GPU

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

CPU vs GPU

CPU
Few, fast cores (1 - 16)
Good at sequential processing

GPU
Many, slower cores (thousands)
Originally for graphics
Good at parallel computation

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

NVIDIA vs AMD

NVIDIA is more commonly used in the research community
cuDNN drivers by NVIDIA is the basis for all deep learning
libraries
You can implement your own layers using CUDA, the
NVIDIA’s programming language for parallel computing on
GPU

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

CPU vs GPU

GPUs are really good at matrix multiplication

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

CPU vs GPU

GPUs are really good at convolution (cuDNN)

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

GPU Training

Even with GPUs, training can be slow
ResNet-101: 1 week using 4 TITAN GPUs on ImageNet
dataset

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Why need multi-GPU?

Further speed-up

The memory size of a single GPU is limited

GeForce GTX 670: 2GB
TITAN: 6GB
TITAN X: 12GB
Tesla K40: 12GB
Tesla K80: two K40
Tesla P100: 16 GB
Tesla V100: 16GB/32GB (USD $10,000)

Train bigger models

Data parallelism

Model parallelism

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Cost of using multi-GPU

Synchronization

Communication overhead

Communication between GPUs in the same server
Communication between GPU servers

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Data parallelism
The mini-batch is split across several GPUs. Each GPU is responsible
computing gradients with respect to all model parameters, but does so
using a subset of the samples in the mini-batch
The model (parameters) has a complete (same) copy in each GPU
The gradients computed from multiple GPUs are averaged to update
parameters in both GPUs

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Drawbacks of data parallelism

Require considerable communication between GPUs, since each GPU
must communicate both gradients and parameter values on every
update step

Each GPU must use a large number of samples to effectively utilize the
highly parallel device; thus, the mini-batch size effectively gets
multiplied by the number of GPUs

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Model parallelism

Consist of splitting an individual network’s computation across multiple
GPUs

For instance, convolutional layer with N filters can be run on two GPUs,
each of which convolves its input with N/2 filters

The architecture is split into two columns which make easier to split
computation across the two GPUs

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Model parallelism

A mini batch has the same copy in each GPU

GPUs have to be synchronized and communicate at every layer if
computing gradients in a GPU requires outputs of all the feature maps
at the lower layer

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Model parallelism

Krizhevsky et al. customized the architecture of the network to better
leverage model parallelism: the architecture consists of two “columns”
each allocated on one GPU

Columns have cross connections only at one intermediate layer and at
the very top fully connected layers

A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep
convolutional neural networks,” in NIPS, 2012.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Model parallelism

While model parallelism is more difficult to implement, it has two
potential advantages relative to data parallelism

It may require less communication bandwidth when the cross
connnections involve small intermediate feature maps
It allows the instantiation of models that are too big for a single
GPU’s memory

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Hybrid data and model parallelism

Data and model parallelism can be hybridized.

Examples of how model and data parallelism can be combined in order to make
effective use of 4 GPUs

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Hybrid data and model parallelism

Test error on ImageNet a function of time using different forms of parallelism. All
experiments used the same mini-batch size (256) and ran for 100 epochs (here
showing only the first 10 for clarity of visualization) with the same architecture and the
same hyper-parameter setting as in Alex net. If plotted against number of weight
updates, all these curves would almost perfectly coincide.

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Hybrid data and model parallelism

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Distributed computation with CPU cores
Model parallelism: Only those nodes with edges that cross partition
boundaries will need to have their state transmitted between machines.
Even in cases where a node has multiple edges crossing a partition
boundary, its state is only sent to the machine on the other side of that
boundary once.
Within each partition, computation for individual nodes will the be
parallelized across all available CPU cores
It requires data synchronization and data transfer between machines
during both training and inference

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Distributed computation with CPU cores

Models with local connectivity structures tend to be more amendable to
extensive distribution than fully-connected structures, given their lower
communication requirements

Models with a large number of parameters or high computational
demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate

It means that the speedup cannot keep increasing with infinite number
of machines

The typical cause of less-than-ideal speedup is variance in processing
times across the different machines, leading to many machines waiting
for the single slowest machine to finish a given phase of computation

Xiaogang Wang Optimization for Training Deep Models

cuhk

Optimization Basics
Optimization of training deep neural networks

Multi-GPU Training

Reading Materials

R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,” Chapter
6, 2000.

Y. LeCun, L. Bottou, G. B. Orr, and K. Muller, “Efficient BackProp,”
Technical Report, 1998.

Y. Bengio, I. J. GoodFellow and A. Courville, “Numerical Computation”
in “Deep Learning”, Book in preparation for MIT Press

Y. Bengio, I. J. GoodFellow and A. Courville, “Numerical Optimization”
in “Deep Learning”, Book in preparation for MIT Press

O. Yadan, K. Adams, Y. Taigman, and M. Ranzato, “Multi-GPU Training
of ConvNets”, arXiv:1312.583, 2014

J. Dean, G. S. Corrado, R. Monga, and K. Chen, “Large Scale
Distributed Deep Networks,” NIPS 2012

Xiaogang Wang Optimization for Training Deep Models

	Optimization Basics
	Optimization of training deep neural networks
	Multi-GPU Training

