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Max pooling and strided convolution

Both max pooling and strided convolution are constantly used to decrease
spatial dimension of feature maps

Max pooling with 2 × 2 kernel and stride 2
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Max pooling and strided convolution
Both max pooling and strided convolution are constantly used to decrease
spatial dimension of feature maps

Strided convolution with 3 × 3 kernel and stride 2
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Feature map size and receptive field size

Output feature maps can be calculated with the following formula

nout =

⌊
nin + 2p − k

s

⌋
+ 1

where nin and nout are the number of channels of the input and output feature
maps, p is the padding size, s is the stride size, k is the convolution kernel size.

The receptive field of a feature can be briefly defined as the region in the input
image pixel space that the feature is calculated from

Two consecutive convolution with kernel size k = 3 × 3, padding size p = 1 × 1, stride s = 2 × 2.
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Feature map size and receptive field size
Output feature maps can be calculated with the following formula

jout = jin × s

rout = rin + (k − 1)× jin
where j is the jump in the output feature map, r is the receptive field size
For very first input to a network, we always have r0 = 1 and j0 = 1
Given the previous example, we have

r1 = r0 + (k − 1)× j0 = 1 + (3− 1)× 1 = 3, j1 = j0 × 2 = 2

r2 = r1 + (k − 1)× j1 = 3 + 2× 2 = 7, j2 = j1 × 2 = 4

Two consecutive convolution with kernel size k = 3 × 3, padding size p = 1 × 1, stride s = 2 × 2.
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Different CNN structures for image classification

AlexNet

Clarifai

Overfeat

VGG

Network-in-network

GoogLeNet

ResNet
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Model architecture-AlexNet Krizhevsky 2012

5 convolutional layers and 2 fully connected layers for learning features.

Max-pooling layers follow first, second, and fifth convolutional layers

The number of neurons in each layer is given by 253440, 186624, 64896, 64896,
43264, 4096, 4096, 1000

650000 neurons, 60000000 parameters, and 630000000 connections

(Krizhevsky NIPS 2014)
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How transferable are features in CNN networks?

(Yosinski et al. NIPS’14) investigate transferability of features by CNNs

The transferability of features by CNN is affected by
I Higher layer neurons are more specific to original tasks
I Layers within a CNN network might be fragilely co-adapted

Initializing with transferred features can improve generalization after substantial
fine-tuning on a new task
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Base tasks

ImageNet are divied into two groups of 500 classes, A and B

Two 8-layer AlexNets, baseA and baseB, are trained on the two groups,
respectively
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Transfer and selffer networks

A selffer network BnB: the first n layers are copied from baseB and frozen. The
other higher layers are initialized randomly and trained on dataset B. This is the
control for transfer network

A transfer network AnB: the first n layers are copied from baseA and frozen. The
other higher layers are initialized randomly and trained toward dataset B
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Transfer and selffer networks (cont’d)

A selffer network BnB+: just like BnB, but where all layers learn

A transfer network AnB+: just like AnB, but where all layers learn
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Results
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Dissimilar datasets

Divide ImageNet into man-made objects A (449 classes) and natural objects B
(551 classes)

The transferability of features decreases as the distance between the base task
and target task increases
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Investigate components of CNNs

Filter size

Filter (channel) number

Stride

Dimensionality of fully connected layers

Data augmentation

Model averaging
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Investigate components of CNNs (cont’d)

(Chatfield et al. BMVC’14) pre-train on ImageNet and fine-tune on PASCAL VOC
2007

Different architectures
I mAP: CNN-S > (marginally) CNN-M > (∼%2.5) CNN-F

Different data augmentation
I No augmentation
I Flipping (almost no improvement)
I Smaller dimension downsized to 256, cropping 224× 224 patches from the

center and 4 corners, flipping (∼ 3% improvement)

(Chatfield et al. BMVC 2014)
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Investigate components of CNNs (cont’d)

Gray-scale vs. color (∼ 3% drop)

Decrease the number of nodes in FC7
I to 2048 (surprisingly, marginally better)
I to 1024 (marginally better)
I to 128 (∼ 2% drop but 32x smaller feature)

Change the softmax regression loss to ranking hinge loss
I wcφ(Ipos) > wcφ(Ineg) + 1− ξ (ξ is a slack variable)
I ∼ 2.7% improvement
I Note, L2 normalising features account for ∼ 5% of accuracy for VOC 2007

On ILSVRC-2012, the CNN-S achieved a top-5 error rate of 13.1%
I CNN-F: 16.7%
I CNN-M: 13.7%
I AlexNet: 17%
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Model architecture-Clarifai

Winner of ILSVRC 2013

Max-pooling layers follow first, second, and fifth convolutional layers

11×11 to 7×7, stride 4 to 2 in 1st layer (increasing resolution of feature maps)

Other settings are the same as AlexNet

reduce the error by 2%.
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Model architecture-Clarifai further investigation

More maps in the convolutional layers leads to small improvement.

Model averaging leads to improvement (random initialization).
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Model architecture-Overfeat

Less pooling and more filters (384 => 512 for conv3 and 384=>1024 for conv4/5).
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Model architecture-Overfeat

With data augmentation, more complex model has better performance.
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Model architecture-the devil of details

CNN-F: similar to AlexNet, but less channels in conv3-5.

CNN-S: the most complex one.

CNN-M 2048: replace the 4096 features in fc7 by 2048 features. Makes little
difference.

Data augmentation. The input image is downsized so that the smallest
dimension is equal to 256 pixels. Then 224× 224 crops are extracted from the
four corners and the centre of the image.
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Model architecture-very deep CNN

The deep model
VGG in 2014.

Apply 3× 3 filter for
all layers.

11 layers (A) to 19
layers (E).
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Model architecture- very deep CNN

The deep model VGG in 2014.

Better to have deeper layers. 11 layers (A) => 16 layers (D).

From 16 layers (D) to 19 layers (E), accuracy does not improve.
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Model architecture- very deep CNN
Scale jittering at the training time.

The crop size is fixed to 224× 224.

S: the smallest side of an isotropically-rescaled training image.

Scale jittering at the training time: [256; 512]: randomly select S to be within
[256 512].

LRN: local response normalisation. A-LRN does not improve on A.
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Model architecture- very deep CNN
Multi-scale averaging at the testing time.

The crop size is fixed to 224× 224.

Q: the smallest side of an isotropically-rescaled testing image.

Running a model over several rescaled versions of a test image (corresponding
to different Q), followed by averaging the resulting class posteriors. Improves
accuracy (25.5 => 24.8).
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Model architecture- Network in Network

Use 1×1 filters after each convolutional layer.
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Model architecture- Network in Network

Remove the two fully connected layers (fc6, fc7) of the AlexNet but add NIN into
the AlexNet.
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Model architecture- GoogleNet

Inspired by the good performance of NIN.
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Model architecture- GoogleNet

Inception model.

Variable filter sizes to capture different visual patterns of different sizes. Enforce
sparse connection between previous layer and output.

The 1× 1 convolutions are used for reducing the number of maps from the
previous layer.
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Model architecture- GoogleNet

Based on inception model.

Cascade of inception models.

Widths of inception modules ranges from 256 filters (in early modules) to 1024 in
top inception modules.
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Model architecture- GoogleNet

Parameters.
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GoogleNet-v2/BN-Inception

The advantages of Batch Normalization (BN) layer

I Higher learning rate can be used.
I The need for Dropout can be reduced.

Main differences from GoogleNet-v1

I 5× 5 convolution layers are converted to two consecutive 3× 3 convolution
layers with up to 128 filters

I Adopt the BN layer after each convolution layer.
I During training, moving average is used to calculate the mean and

variance of the BN layers
I During testing, the mean and variance are calculated using the entire

training set in a layer-by-layer manner
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GoogleNet-v2/BN-Inception
Inception vs. BN-Baseline: using BN can improve the training speed significantly
BN-x5 & BN-x30: the initial learning rate can be increased largely to improve the
training speed even better
BN-x5-Sigmoid: saturation problem by Sigmoid can be a kind of removed

Performance on ImageNet

Inception: Inception-v1 without BN
BN-Baseline: Inception with BN

BN-x5: Initial learning rate is increased by a factor of 5 to 0.0075
BN-x30: Initial learning rate is increased by a factor of 30 to 0.045

BN-x5-Sigmoid: BN-x5 but with Sigmoid
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GoogleNet-v3

Factorization was introduced in convolution layer as shown above to further
reduce the dimensionality, so as to reduce the overfitting problem

By using 3× 3 filter, number of parameters = 3× 3 = 9

By using 3× 1 and 1× 3 filters, number of parameters = 3× 1 + 1× 3 = 6
Number of parameters is reduced by 33%

3 × 3 conv becomes 1 × 3 and 3 × 1 convs (Left), 7 × 7 conv becomes 1 × 7 and 7 × 1 convs (Right)
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GoogleNet-v3

Three types of inception modules (A, B, C)
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GoogleNet-v3

Conventionally, such as AlexNet and VGGNet, the feature map downsizing is
done by max pooling

The drawback is either too greedy by max pooling followed by conv layer, or too
expensive by conv layer followed by max pooling

Half of feature maps are done by conv with stride 2. Half of feature maps are
obtained by max pooling. These 2 sets of feature maps are concatenated
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GoogleNet-v3

GoogleNet-v3/Inception-v3 architecture

Inception-v3 Architecture (Batch Norm and ReLU are used after Conv)
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ResNets @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks
I ImageNet Classification: ‘Ultra-deep’ 152-layer nets
I ImageNet Detection: 16% better than 2nd
I ImageNet Localization: 27% better than 2nd
I COCO Detection: 11% better than 2nd
I COCO Segmentation: 12% better than 2nd
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Roadmap of Network Depth
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Going deeper

Bear the following in mind:

Batch normalization. [Sergey Ioffe, Christian Szegedy. ICML 2015]

Is learning better networks as simple as stacking more layers?
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Simply stacking more layers

Plain nets: stacking 3x3 conv layers.

56-layer net has higher training error and test error than 20-layer net.
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Deep Residual Learning

Plain net:

H(x) is any desired mapping.
Let these two conv (weight) layers fit H(x).
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Deep Residual Learning

Residual net:

H(x) is any desired mapping.
Let these two conv (weight) layers fit H(x).
Let these two conv (weight) layers fit F(x), where F (x) = H(x)− x .
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Deep Residual Learning

Residual net:

F (x) is a residual mapping w.r.t. identity.

If identity were optimal, easy to set weights as 0

If optimal mapping is closer to identity, easier to find small fluctuations
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Network Structure

Basic design: VGG style

all 3× 3 conv

no FC layer, no dropout

Training details:

Trained from scratch

Use batch normalization

Standard hyper-parameters &
augmentation

Figure: Basic residual block.
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Network Structure
Detailed ResNet structure (rightmost) for ImageNet 2015 entry: (part1)
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Network Structure

Detailed ResNet structure (rightmost) for ImageNet 2015 entry: (part2)

The dotted shortcuts increase channel dimensions.
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CIFAR-10 experiments

Deep ResNets can be trained without difficulties.
Deeper ResNets have lower training error, and also lower test error.
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ImageNet experiments

Deep ResNets can be trained without difficulties.
Deeper ResNets have lower training error, and also lower test error.
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Extension and Resource

Residual Networks Behave Like Ensembles of Relatively Shallow Networks,
NIPS 2016.

Comparison among ResNet, Highway Network, DenseNet. A blog post here.
Another one.

ResNet code: [Model available] [Torch implementation]
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https://github.com/KaimingHe/deep-residual-networks
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Roadmap of Network Structure
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Inception-v4 model
A more uniform simplified architecture and more inception modules than
Inception-v3
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Inception-ResNet-v2 model
A shortcut connection at the left of each module. Inception-ResNet-v2 was
training much faster and reached slightly better final accuracy than Inception-v4.
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Experiment results

Single model evaluated on ILSVRC CLS 2012 validation set.
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DenseNet
ResNet solve the gradient vanishing problem by converting the feature mapping
equation with identity addition

xl = Hl(xl−1) → xl = Hl(xl−1) + xl−1

DenseNets do not sum the output feature maps of the layer with the incoming
feature maps but concatenate them

xl = Hl([x0, x1, · · · , xl−1])

Every layer has access to its preceding feature maps, and therefore, to the
collective knowledge
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DenseNet
DenseNets are divided into Dense Blocks, where the spatial dimensions of the
feature maps remains constant within a block, but the number of filters changes
between them.

The feature volume within a dense block remains constant

There is a transition block follows every dense block, which has 1× 1
convolution that halves the number of feature maps followed by a 2× 2 pooling
with a stride of 2

The volume and the feature maps are halved after every transition block

Dense-121. Dx: Dense Block x. Tx: Transition Block x.

Xiaogang Wang (CUHK) Network Structures February 18, 2019 56 / 60



cuhk

DenseNet

Different DenseNet structures
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Reading materials

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Proc. NIPS, 2012.

M. Ranzato, “Neural Networks,” tutorial at CVPR 2013.

K. Chatfield, K. Simonyan, A. Vadaldi, and A. Zisserman, “Return of the Devil in
the Details: Delving Deep into Convolutional Networks,” BMVC 2014.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convolutional
networks,” In Proc. Int’l Conf. Learning Representations, 2014.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

M. Lin, Q.. Chen, and S. Yan, “Network in network,” arXiv:1312.4400v3, 2013.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” arXiv:1409.4842, 2014.
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Reading materials

Deep Residual Learning for Image Recognition. K. He, et al. CVPR 2016. Best
paper.

I Highway and Residual Networks learn Unrolled Iterative Estimation, ICLR
2017.

I Identity Mappings in Deep Residual Networks. K. He, et al. ECCV 2016.
Extension discussion of ResNet.

I Deep Networks with Stochastic Depth. G. Huang, et al. ECCV 2016
I Unsupervised Domain Adaptation with Residual Transfer Networks. NIPS

2016.
I Wide Residual Networks. BMVC 2016.
I Residual LSTM: Design of a Deep Recurrent Architecture for Distant

Speech Recognition. https://arxiv.org/abs/1701.03360.
I · · ·
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Reading materials

Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. https://arxiv.org/abs/1602.07261v2.

I Rethinking the Inception Architecture for Computer Vision.
https://arxiv.org/abs/1512.00567v3.

I Wide-Residual-Inception Networks for Real-time Object Detection.
https://arxiv.org/pdf/1702.01243v1.pdf

I · · ·
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