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Introduction

⚫ Normalization is a well-known technique in deep learning.

⚫ The first normalization method----Batch Normalization (BN). 
BN achieves the same accuracy with 14 times fewer training steps

⚫ Normalization improves both optimization and generalization of a DNN.

⚫ Various normalizers in terms of tasks and network architecture

— Batch Normalization (BN), Image classification [1]

— Instance Normalization (IN), Image style transfer [2]

— Layer normalization (LN), Recurrent Neural Network (RNN) [3]

— Group normalization (GN), robust to batch size, image classification, object detection [4]

Normalization methods have been a foundation of various state-of-the-art
computer vision tasks
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Introduction

⚫ Object of normalization method

— a 4-D tensor 𝒉 ∈ 𝑹𝑵×𝑪×𝑯×𝑾

N- minibatch size (the number of samples)

C- number of channels 

H- height of a channel 

W- width of a channel 

⚫ A very common building block

— Conv+Norm+ReLU

⚫ They work by standardizing the activations within specific scope. 
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⚫ Two statistics: mean 𝜇 and variance 𝜎2

⚫ Two learnable parameters: 

scale parameter 𝛾 and shift parameter 𝛽
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Various Normalizers-IN, BN, LN and GN

Calculating mean 𝜇 and variance 𝜎2 in different scope produces different normalizers.

Given a feature map in DNN 𝒉𝒏𝒄𝒊𝒋 ∈ 𝑹𝑵×𝑪×𝑯×𝑾, 
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GN
GN divides the channels into groups and 
computes within each group the mean and 
variance for normalization.



Various Normalizers-SN and SSN

The above-mentioned methods of normalization use the same normalizer in different normalization layer.

Swithchable Normalization (SN) is able to learn different normalizer for each normalization layer [5].

𝜇𝑆𝑁 = 𝑝1𝜇𝐼𝑁 + 𝑝2𝜇𝐵𝑁 + 𝑝3𝜇𝐿𝑁, 𝜎𝑆𝑁
2 = 𝑝1𝜎𝑆𝑁

2 + 𝑝2𝜎𝑆𝑁
2 + 𝑝3𝜎𝑆𝑁

2

Where 𝑝1, 𝑝2, 𝑝3 = softmax 𝑧1, 𝑧2, 𝑧3 and 𝑧1, 𝑧2, 𝑧3 are learnable parameters  

𝑧1, 𝑧2, 𝑧3 learned by SGD in different layers could be different



Various Normalizers-SN and SSN

However, SN suffers from overfitting and redundant computation.

— overfitting, 𝑧1, 𝑧2, 𝑧3 are optimized without any constraint.

— redundant computation, compute all statistics in IN, BN and LN in the inference stage

Sparse Switchable Normalization (SSN) is able to learn only one normalizer for each normalization layer [6].

Statistics in SSN:
𝜇𝑆𝑁 = 𝑝1𝜇𝐼𝑁 + 𝑝2𝜇𝐵𝑁 + 𝑝3𝜇𝐿𝑁, 𝜎𝑆𝑁

2 = 𝑝1𝜎𝑆𝑁
2 + 𝑝2𝜎𝑆𝑁

2 + 𝑝3𝜎𝑆𝑁
2

Such that 𝑝1 + 𝑝2 + 𝑝3 = 1 𝑎𝑛𝑑 𝑝𝑖 ∈ 0,1

SSN is achieved by a novel transformation ‘SparsestMax’, which is used to
substituted softmax in SN



An Unified Representation: Meta Normalization [7]

Question. Is there an universal normalization that could include IN, BN, LN, etc. ?

To answer this question, let’s consider the relation between 𝜇𝐼𝑁 and 𝜇𝐵𝑁, 𝜇𝐿𝑁

𝜇11 ⋯ 𝜇1𝐶
⋮ ⋱ ⋮

𝜇𝑁1 ⋯ 𝜇𝑁𝐶

𝜇𝐼𝑁 ∈ 𝑅𝑁×𝐶

𝜇𝐵𝑁 ∈ 𝑅𝐶

𝜇𝐿𝑁 ∈ 𝑅𝑁
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An Unified Representation: Meta Normalization

MN. We can design an universal normalization by constructing binary matrix U and V as follows:
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𝑍𝑈 and 𝑍𝑉 are normalizing factor. 𝑈 ∈ 𝑅𝑁×𝑁 and 𝑉 ∈ 𝑅𝐶×𝐶 are 

two binary matrix whose elements are either 0 or 1 

Representation Capacity. In MN, V aggregates the statistics from the channels, while U aggregates those in a batch 

of samples. Therefore, different V and U represent different normalization approaches. 

◆ Let 𝑈 = 𝐼 and 𝑉 = 𝐼, then MN represents IN.

◆ Let 𝑈 =
1

𝑁
𝟏 and 𝑉 = 𝐼, then MN turns into BN.

◆ Let 𝑈 = 𝐼 and 𝑉 =
1

𝐶
𝟏, then MN represents LN.

◆ Let 𝑈 = 𝐼 and 𝑉 =
2

𝐶

𝟏 𝟎
𝟎 𝟏

, then MN represents GN with a group number of 2.



Back-propagation of MN

MN. Let ෨𝐹𝑛𝑐𝑖𝑗 be the neuron after normalization, and then it is transformed to 
ത𝐹𝑛𝑐𝑖𝑗. 

Back-propagation. What we most care about is to back-

propagate the gradient of output 
𝝏𝑳

𝝏ഥ𝑭𝒏𝒄𝒊𝒋
to the gradient of 

input 
𝝏𝑳

𝝏𝑭𝒏𝒄𝒊𝒋
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Back-propagation of MN
Back-propagation.   
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Geometric View of BN. Let 𝑈 =
1

𝑁
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Geometric View of LN. Let 𝑈 = 𝐼 and 𝑉 =
1

𝐶
𝟏.

Geometric View of N with group number G.
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Geometric Interpretation

Projection Matrix. Given a matrix A, we have projection matrix 𝑷 = 𝑨 𝑨𝑻𝑨
−𝟏
𝑨𝑻. 

The columns of A, we're given, form a basis for some subspace W, matrix (𝑰 − 𝑷) is the projection matrix for the 
orthogonal complement of W.

Given a vector y, 𝑷𝒚 lies in subspace 𝑾 and (I − 𝑷)𝒚 is in the orthogonal complement of W.

Take BN as an example. y

Py

(I-P)y

Let 𝐴 = [𝟏, ෨𝐹𝑐], then

𝐴𝑇𝐴 =
𝟏𝑻𝟏 0
0 ෨𝐹𝑐

𝑇 ෨𝐹𝑐
= 𝑁𝐻𝑊

𝟏
𝟏

.

Therefore, the projection matrix corresponding to A 
is exactly



Why Batch Normalization? 

BN has been an indispensable component in various networks architectures. The effectiveness of BN 
has been uncovered form two aspects: optimization and generalization.

A more fundamental impact of BatchNorm on the training process: it makes the optimization landscape 
significantly smoother [8].

the variation (shaded region) in loss ℓ2 changes in the gradient 
as we move in the gradient 

direction

maximum difference (ℓ2 nrom) in 
gradient over distance moved in that 
direction.



Lipschitzness of the Loss
BN causes the landscape to be more well-behaved, inducing favorable properties in Lipschitz-
continuity。
Let’s first consider the optimization landscape wrt. activation. 

gradient magnitude, 
captures the Lipschitzness
of the loss 

empically
less than 1

grows quadratically 
in the dimension

bounded away from zero



Lipschitzness of the Loss
Let’s now turn to consider the optimization landscape wrt. weight. 



Regularization in BN

Batch normalization implicitly discourages single channel reliance, suggesting an alternative 
regularization mechanism by which batch normalization may encourage good generalization 
performance.

BN makes channel equal such that they play 
homogeneous role in representing a prediction function.

Networks trained with batch normalization are more robust to
these ablations than those trained without batch normalization 

How to empirically verify this conclusion? [9]

measure their robustness to cumulative ablation of channels



Regularization in BN
We explore explicit regularization expression in BN
by analyzing a building block in a deep network.

BN also induces Gaussian priors for 
batch mean 𝝁𝑩 and batch standard deviation 𝝈𝑩. [10]

These priors tell us that 𝝁𝑩 and 𝝈𝑩would produce Gaussian noise. 

Taking expectation over such noise may give us explicit regularization expression in BN. [11]

◆ regularization strength ζ is inversely proportional to the batch size M.

◆ 𝝁𝑩 and 𝝈𝑩 produce two different regularization strengths.

◆ 𝝁𝑩 penalizes the expectation of activation, implying that the neuron with 

larger output may exposure to larger regularization. 

expectation of activation         ζ        γ expectation of activation



Normalization in Various Computer Vision Tasks

Image Classification

Object Detection

Semantic Segmentation



Normalization in Various Computer Vision Tasks
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