
1/22

ELEG 5491: Introduction to Deep Learning
Varational Autoencoder

Prof. LI Hongsheng

Office: SHB 428
e-mail: hsli@ee.cuhk.edu.hk

web: https://dl.ee.cuhk.edu.hk

Department of Electronic Engineering
The Chinese University of Hong Kong

March 2023

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

2/22

The revisit of autoencoder

Autoencoder is a neural network designed to learn an identity function in
an unsupervised way to reconstruct the original input while compressing
the data in the process so as to discover a more efficient and compressed
representation

Encoder network translates the original high-dimension input into the
latent low-dimensional code. The input size is larger than the output size

Decoder network recovers the data from the code, likely with larger and
larger output layers

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

3/22

The revisit of autoencoder

The model contains an encoder function gφ(·) parameterized by φ and a
decoder function fθ(·) parameterized by θ

The low-dimensional code learned for input x in the bottleneck layer is z
and the reconstructed input is x′ = fθ(gφ(x))

One common choice is to use the MSE loss for supervision

LAE(θ, φ) =
1

n

n∑
i=1

(
x(i) − fθ

(
gφ
(
x(i)
)))2

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

4/22

Variational Autoencoder (VAE)

Variational Autoencoder is actually less similar to the conventional
autoencoder above, but deeply rooted in variational bayesian and graphical
model
Instead of mapping the input x into a fixed vector, we would like to map it
into a distribution pθ(z), parameterized by θ
Notation

Input x

Prior pθ(z). The assumption of VAE is that z ∼ N (0, 1).

Likelihood pθ(x | z)
Posterior pθ(z | x)

Assuming that we know the real parameter θ∗ for this distribution. To
generate a sample that looks like a real data point x(i), we following the
following steps

First, sample a z(i) from a prior distribution pθ∗ (z)

Then a value x(i) is generated from a conditional distribution
pθ∗

(
x | z = z(i)

)
The optimal θ∗ can be obtained via maximizing the log likelihood of all
training samples

θ∗ = argmax
θ

n∑
i=1

log pθ(x
(i))

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

5/22

Variational Autoencoder (VAE)

If we involve the latent vector, we will have

pθ(x
(i)) =

∫
pθ(x

(i)|z)pθ(z)dz

However, it is impractical to compute pθ(x
(i)) in this way, as summing up

all possible values of z is untractable

We introduce a new approximation function to output what is a likely
latent code given an input x, qφ(z|x), parameterized by φ

Figure: The dashed line indicates the distribution qφ(z|x) to approximate the
intractable posterior pθ(z|x).

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

6/22

Now the structure looks a lot like an autoencoder:

The conditional probability pθ(z|x) defines a generative model, similar to
the decoder fθ(x|z) in the conventional autoencoder. pθ(z|x) is known as
the probabilistic decoder

The approximation function qφ(z|x) is the probabilistic encoder, playing a
similar role as gφ(z|x) above

Figure: The dashed line indicates the distribution qφ(z|x) to approximate the
intractable posterior pθ(z|x).

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

7/22

Loss Function: ELBO

The estimated posterior qφ(z|x) should be very close to the real one
pθ(z | x)
We can use Kullback-Leibler divergence to quantify the distance between
these two distributions. KL divergence DKL(X|Y) measures how much
information is lost if the distribution Y is used to represent X
In our case, we would like to minimize DKL (qφ(z|x) || pθ(z|x)) with
respect to φ
Why use DKL (qφ|pθ) (reversed KL) instead of DKL (pθ|qφ)

Figure: Forward and reversed KL divergence have different demands on how to
match two distributions.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

8/22

Loss Function: ELBO

Reverse KL divergence: DKL(Q|P) = Ez∼Q(z) log
Q(z)
P (z)

; minimizing the

reversed KL divergence squeezes the Q(z) under P (z)
We expand the equation

DKL (qφ(z|x)‖pθ(z|x))

=

∫
qφ(z|x) log

qφ(z|x)
pθ(z|x)

dz

=

∫
qφ(z|x) log

qφ(z|x)pθ(x)
pθ(z,x)

dz

=

∫
qφ(z|x)

(
log pθ(x) + log

qφ(z|x)
pθ(z,x)

)
dz

= log pθ(x) +

∫
qφ(z|x) log

qφ(z|x)
pθ(z,x)

dz

= log pθ(x) +

∫
qφ(z|x) log

qφ(z|x)
pθ(x|z)pθ(z)

dz

= log pθ(x) + Ez∼qφ(z|x)

[
log

qφ(z|x)
pθ(z)

− log pθ(x|z)
]

= log pθ(x) +DKL (qφ(z|x)‖pθ(z))− Ez∼qφ(z|x) log pθ(x|z)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

9/22

Loss Function: ELBO

DKL (qφ(z|x)‖pθ(z|x)) = log pθ(x) +DKL (qφ(z|x)‖pθ(z))− Ez∼qφ(z|x) log pθ(x | z)
log pθ(x)−DKL (qφ(z|x)‖pθ(z|x)) = Ez∼qφ(z|x) log pθ(x|z)−DKL (qφ(z|x)‖pθ(z))

The LHS is what we want to maximize when learning the true
distributions:

To maximize the (log-)likelihood of generating real data (pθ(x))

To minimize the difference between the real and estimated posterior
distributions (DKL works like a regularizer)

The loss function can be defined as

LVAE(θ, φ) = − log pθ(x) +DKL (qφ(z|x)‖pθ(z|x))
= −Ez∼qφ(z|x) log pθ(x|z) +DKL (qφ(z|x)‖pθ(z))

= Lrecon + LKL

θ∗, φ∗ = argmin
θ,φ

LVAE

Both the encoder qφ(z|x) and the decoder pθ(x|z) are modeled as neural
networks (e.g., MLPs)

In Variational Bayesian methods, this loss function is known as the
variational lower bound, or evidence lower bound

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

10/22

Loss Function: ELBO

Lower bound because KL divergence is always non-negative and thus
−LVAE is the lower bound of log pθ(x)

−LVAE = log pθ(x)−DKL (qφ(z|x) ‖ pθ(z|x)) ≤ log pθ(x)

By minimizing the loss, we are maximizing the lower bound of the
probability of generating real data samples

The expectation term in the loss function invokes generating samples from
z ∼ qφ(z|x)
Sampling is a stochastic process and therefore we cannot backpropagate
the gradient

To make it trainable, the reparameterization trick is introduced: It is often
possible to express the random variable z as a deterministic variable

For example, a common choice of the form of qφ(z|x) is a multivariate
Gaussian with a diagonal covariance structure

z ∼ qφ(z | x(i)) = N (z;µ(i),σ2(i)I)

z = µ+ σ � ε, where ε ∼ N (0, I),

where � refers to element-wise product

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

11/22

Reparameterization Trick

The random variable z is expressed as a deterministic variable
z = Tφ(x, ε) where ε is an auxiliary independent random variable, and the
transformation function Tφ (parameterized by φ) converts ε to z
The gradients can then be back-propagated to φ (µ and σ following the
multivariate Gaussian assumption)

Figure: Illustration of how the reparameterization trick makes the sampling process
trainable.(Image source: Slide 12 in Kingma’s NIPS 2015 workshop talk

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

12/22

Loss Function: ELBO

The first term Lrecon = −Ez∼qφ(z|x) log pθ(x | z) is the reconstruction loss

It can either choose L2 loss or binary cross-entropy loss

For L2 loss

Lrecon =
1

2

m∑
i=1

‖x̂(i) − x(i)‖22

For BCE loss

Lrecon = −
m∑
i=1

dim∑
j=1

x
(i)
j log(x̂

(i)
j)

The second term LKL = DKL (qφ(z|x)‖pθ(z)) regularizes the encoded
latent vector z to be close to a standard normal distribution as much as
possible

We derive the loss function with single-variate Gaussian distribution. We
formulate

p(z)→ 1√
2πσ2

p

exp

(
− (z − µp)2

2σ2
p

)
qφ (z|x)→

1√
2πσ2

q

exp

(
− (z − µq)2

2σ2
q

)
Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

13/22

Loss Function: ELBO

−DKL
(
qφ (z|x) ‖p(z)

)

=

∫
1√
2πσ2

q

exp

(
−
(z − µq)2

2σ2
q

)
log

1√

2πσ2
p

exp

(
− (z−µp)2

2σ2
p

)
1√

2πσ2
q

exp

(
− (z−µq)2

2σ2
q

)
 dz

=

∫
1√
2πσ2

q

exp

(
−
(z − µq)2

2σ2
q

)
×

{
−
1

2
log(2π)− log (σp)−

(z − µp)2

2σ2
p

+
1

2
log(2π) + log (σq) +

(z − µq)2

2σ2
q

}
dz

=
1√
2πσ2

q

∫
exp

(
−
(z − µq)2

2σ2
q

){
− log (σp)−

(z − µp)2

2σ2
p

+ log (σq) +
(z − µq)2

2σ2
q

}
dz

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

14/22

Loss Function: ELBO

Express the above as an expectation, we have

−DKL (qφ (z|x) ‖p(z)) = Ez∼q
{
log
(
σq
σp

)
− (z−µp)

2

2σ2
p

+
(z−µq)

2

2σ2
q

}
= log

(
σq
σp

)
+ Ez∼q

{
− (z−µp)

2

2σ2
p

+
(z−µq)

2

2σ2
q

}
= log

(
σq
σp

)
− 1

2σ2
p
Ez∼q

{
(z − µp)2

}
+ 1

2σ2
q
Ez∼q

{
(z − µq)2

}
= log

(
σq
σp

)
− 1

2σ2
p
Ez∼q

{
(z − µp)2

}
+

σ2
q

2σ2
q

= log
(
σq
σp

)
− 1

2σ2
p
Ez∼q

{
(z − µp)2

}
+ 1

2

= log
(
σq
σp

)
− 1

2σ2
p
Ez∼q

{
(z − µq + µq − µp)2

}
+ 1

2

= log
(
σq
σp

)
− 1

2σ2
p

[
Ez∼q

{
(z − µq)2

}
+ 2Ez∼q {(z − µq) (µq − µp)}

+Ez∼q
{
(µq − µp)2

}]
+ 1

2

= log
(
σq
σp

)
− 1

2σ2
p

[
σ2
q + 2× 0× (µq − µp) + (µq − µp)2

]
+ 1

2

= log
(
σq
σp

)
− σ2

q+(µq−µp)
2

2σ2
p

+ 1
2

Substitute σp = 1 and µp = 0, we obtain

−DKL (qφ (z|x) ‖p(z)) = log (σq)−
σ2
q+µ

2
q

2
+ 1

2

= 1
2
log
(
σ2
q

)
− σ2

q+µ
2
q

2
+ 1

2
= 1

2

[
1 + log

(
σ2
q

)
− σ2

q − µ2
q

]
Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

15/22

KL Loss

The above loss is defined on only one sample and z is a scalar

Considering a mini-batch of m samples, the KL loss can be formulated as

LKL =
1

2

m∑
i=1

dim∑
j=1

[
1 + log(σ

(i)
j)2 − (σ

(i)
j)2 − (µ

(i)
j)2

]
We drop the subscript q here for brevity

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

16/22

Actual Implementation

Model

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

17/22

Actual Implementation

Loss

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

18/22

Varational Autoencoder

Figure: Illustration of variational autoencoder model with the multivariate Gaussian
assumption.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

19/22

Varational Autoencoder

The original VAE has limited performance. When trained on the CelebA
dataset:

Figure: Newly sampled images from VAE trained on CelebA dataset.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

20/22

Vector Quantised-Variational AutoEncoder (VQ-VAE)

The VQ-VAE model learns a discrete set of latent variables by the encoder
Vector quantisation map the input vector into a finite set of “code” vectors
Let e ∈ RK×D for i = 1, . . . ,K be the latent code vectors in a codebook
of VQ-VAE. The individual code vector is denoted as
ei ∈ RD, i = 1, . . . ,K
The encoder output E(x) = ze goes through a nearest-neighbor lookup to
match to one of K codes and then this matched code vector becomes the
input for the decoder D(·)

zq(x) = Quantize(E(x)) = ek, where k = argmin
i
‖E(x)− ei‖2

Note that the discrete latent variables can have different shapes in
differnet applications: 1D for speech, 2D for image and 3D for video

Figure: Newly sampled images from VAE trained on CelebA dataset.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

21/22

VQ-VAE

Because argmin() is non-differentiable on a discrete space, the gradients
∇zL from decoder inputs zq is copied to the encoder output E(x). Other
than the reconstruction loss, VQ-VQE also optimizes

L = ‖x−D (ek)‖22︸ ︷︷ ︸
Reconstruction loss

+ ‖sg[E(x)]− ek‖22︸ ︷︷ ︸
VQ loss

+β ‖E(x)− sg [ek]‖22︸ ︷︷ ︸
Commitment loss

where sq[·] is the stop gradient operator

VQ loss: The L2 error between the embedding space (codebook) and the
encoder outputs

Commitment loss: A measure to encourage the encoder output to stay
close to the embedding space and to prevent it from fluctuating too
frequently from one code vector to another

The code vector in the codebook is updated through exponential moving
average (EMA), similar to that in the optimizers

Given a code vector ei, if we have ni encoder output vectors {zi,j}nij=1

that are quantized to ei:

N
(t)
i = γN

(t−1)
i + (1− γ)n(t)

i , m
(t)
i = γm

(t−1)
i + (1− γ)

n
(t)
i∑
j=1

z
(t)
i,j , e

(t)
i = m

(t)
i /N

(t)
i

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

22/22

VQ-VAE

VQ-VAE shows much better performance than the vanilla VAE

Figure: (Left) Training images. (Right) Reconstructions from a VQ-VAE with a
32× 32× 1 latent space, with K = 512.

Figure: Samples (128× 128) from a VQ-VAE with a PixelCNN prior trained on
ImageNet images. Left to right: kit fox, gray whale, brown bear, admiral (butterfly),
coral reef, alp, microwave, pickup.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

